
Journal of Econometrics 153 (2009) 183–195
Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

Learning in a multilateral bargaining experiment
Guillaume R. Fréchette
New York University, Department of Economics and CESS, 19 West Fourth Street, 6th floor, New York, NY 10012, United States

a r t i c l e i n f o

Article history:
Available online 27 June 2009

JEL classification:
C92
D83
C12

Keywords:
Learning
Bargaining
Estimation
Hypothesis tests

a b s t r a c t

This paper analyzes data from an investigation of amajoritarian bargaining experiment. A learningmodel
is proposed to account for the evolution of play in this experiment. It is also suggested that an adjustment
must be made to account for the panel structure of the data. Such adjustments have been used in other
fields and are known to be important as unadjusted standard errors may be severely biased downward.
These results indicate that this adjustment also has an important effect in this application. Furthermore,
an efficient estimator that takes into account heterogeneity across players is proposed. A unique learning
model to account for the paths of play under two different amendment rules cannot be rejected with the
standard estimatorwith adjusted standard errors, however it can be rejected using the efficient estimator.
The data and the estimated learning model suggest that after proposing ‘‘fair’’ divisions, subjects adapt
and their proposals change rapidly in the treatment where uneven proposals are almost always accepted.
Their beliefs in the estimated learningmodel are influenced bymore than just themost recent outcomes.
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1. Introduction

Bargaining is clearly a central issue in economics, but it is also
very important in both political science and psychology. As a result,
it is a topic where research has been shared across disciplines and
has, for instance, been at the root of some key papers in behavioral
economics, where experimentalmethods have served as an impor-
tant tool in the development of concepts such as other-regarding
preferences (Bolton and Ockenfels, 2000; Fehr and Schmidt, 1999;
Charness and Rabin, 2002) and learning (Roth and Erev, 1995;
Cooper et al., 1997; Camerer and Ho, 1999). The basic bilateral bar-
gaining model of Rubinstein (1982) was extended to a multilateral
setting by Baron and Ferejohn (1989) with the goal of modeling
legislative bargaining. Since then themodel has been used to study
many aspects of politics and is cited in countless papers. Accord-
ing to Persson and Tabellini (2000): ‘‘The model has since become
one of the workhorse models in the rational choice approach to US
congressional politics.’’(Persson and Tabellini (2000), p. 110.)
Of course, a multilateral bargaining model is of interest to

economists. Some of the recent applications and developments of
the model in economics include theoretical work on the division
of a stochastic amount of money (Eraslan and Merlo, 2002), and
applied work on the effect of representation on the economic
growth of states (Levitt and Poterba, 1999).
In both political science and economics there have been

empirical tests of the theory with mixed results (for instance
Warwick and Druckman (2001), Knight (2002) and Ansolabehere

E-mail address: frechette@nyu.edu.

0304-4076/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.jeconom.2009.06.004
et al. (2005)).1 Some find support for the existence of proposer
power, while others find that distributions of payoffs, contrary to
what theory suggests, seem to be proportional to the number of
votes controlled. Clearly, there are many factors that make field
data difficult to analyze. Experimental methods have a distinct
advantage by allowing the researcher to vary only the amendment
rules. They can also eliminate problems such as the varying
importance or salience of different portfolios of ministries that
arise in studying coalition governments (Warwick and Druckman,
2001), repeated play effects, the effects of the selection rule
(Fréchette et al., 2005b), and varying bargaining power (Fréchette
et al., 2005a).
This paper reports results from an experiment testing the

comparative static predictions between two amendment rules:
closed and open. When studying the Baron and Ferejohn model of
legislative bargaining, Fréchette et al. (2003) found that although
qualitative predictions of themodelwere supported, the stationary
subgame perfect equilibrium point predictions tended to be off
the mark. Subjects’ behavior evolved very rapidly in a way that
suggests adaptive behavior. This paper uses that same data to
explain the evolution of proposals by an adaptive learning model.
The focus of this paper is the process by which proposals for the
division of the money evolve, thus it will be of very little relevance
to political economy, and focuses on learning and the estimation
problem. It explains the evolution of behavior by using a belief

1 Many other papers precede Baron and Ferejohn (1989) but give us information
about the model’s performance in field data, for instance Browne and Franklin
(1973).
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based learning model. Furthermore, it is shown that one cannot
reject the hypothesis of a unified model explaining the data from
the two different games using a typical estimator while adjusting
the variance of the estimates to account for the panel nature of
the data. On the other hand, when a more efficient estimator
that directly accounts for heterogeneity in the data is used, this
hypothesis can be rejected. These two observations point to the
importance of taking into account the panel structure of the data,
both for the purpose of hypothesis testing and for the estimation
of parameters.
The Baron and Ferejohnmodel is a ‘‘divide the dollar’’gamewith

more than two players and a majority voting rule. The experiment
explores a closed and an open rule setting. The data from the
experiment show that subjects under both treatments originally
behave the same, offering an almost equal split of the pie to all
subjects. However, under the closed rule, they move toward a
situation where n−12 subjects are excluded from the benefits, and
the proposer keeps a greater share of the pie for herself. On the
other hand, at the end of the open rule sessions, about half of the
proposals distribute money to all subjects, while the other half
excludes fewer than n−1

2 members from benefits. For example,
although nobody gave zero to another subject in election 1 of the
closed rule, by election 15 nearly 50% of all offers gave nothing to 2
out of 5 members. In contrast, under the open rule, there were no
offers in election 15 giving nothing to 2 members.
The end-of-session behavior is vastly different from actions at

the beginning. This result is quite striking considering the fact that
the experiments only lasted fifteen elections. The average share
the proposer takes for herself under the closed rule almost doubles
between election 1 and election 15.
Using the standard approach to estimating learning where one

treats repeated observations as independent, one can reject the
hypothesis that a single learning model explains the evolution
in both closed and open rule games. Such a result is consistent
with most evidence from previous studies which shows that data
should not be pooled across games. However, since estimation of
learning models employs panel data, it is likely that observations
across periods for a given individual are correlated in a way that
is not accounted for by the learning model. In ignoring the fact
that one has repeatedmeasures for an individual when performing
estimation, it is often the case that standard errors are biased
downward. Once the variance–covariance matrix is adjusted to
account for correlation across observations for a given individual,
the hypothesis that both games can be explained by the same
learning model cannot be rejected. Adjustments of this sort have,
tomy knowledge, never been performedwhen estimating learning
models and may account for the common finding that parameter
estimates are not stable across similar games (Stahl, 1996; Camerer
and Ho, 1999; Erev and Haruvy, 2001). Previous estimation of
learning models have varied the specific dynamics estimated
but also details of the estimation, especially how the priors are
obtained. The effects of the adjustment to the variance–covariance
matrix proposed here is shown to be robust to a few different
specifications of the priors. On the other hand, the results of
the key hypothesis tests are affected if heterogeneity in priors is
incorporated in the estimator. Amore efficient estimator proposed
in this paper, which takes the heterogeneity across subjects
directly into account, leads to the opposite conclusion, namely
that the hypothesis of a common learning model can be rejected.
Hence, the results highlight the fact that this type of adjustment
of the variance–covariance matrix can have an important impact
on the power of tests. However, the relatively high rates of
type I error that will be observed in simulations using the more
efficient estimator also point to the difficulties inherent in using
experimental data, in which samples tend to be relatively small.
The paper proceeds as follows. First, the model on which this

experiment is based is presented, followed by the experimental
design, and the experimental results. Then the learning model, the
estimationmethod, and the estimation of the variance–covariance
matrix is described. This is followed by an explanation of the
simplifications of themodel that aremade for estimation purposes.
Results are presented and more specifically, it is shown that one
cannot reject the hypothesis that both closed and open rules result
from the same learning process after the variance–covariance
is appropriately adjusted. Finally, an estimator that allows for
heterogeneous priors is proposed, and estimates are presented,
followed by simulation results about the performance of the
different estimators.

2. Theoretical model and predictions

The Baron–Ferejohn (BF, 1989) model is in essence a ‘‘divide
the dollar’’ game where proposals are approved by majority rule.
It is intended to reflect a legislative setting. Four elements define
a legislature: n members, a recognition rule, an amendment rule,
and a voting rule. Members of the legislature have risk-neutral
preferences and derive utility solely from benefits allocated to
their district. Finally, there is perfect information – all actions are
observable – and also there is common knowledge of preferences
and legislative rules. Both the recognition rule and the amendment
rule are assumed to select a person at random.
At the beginning of an election,2 each member i has a probabil-

ity pi = 1/n of being recognized, and if recognized, makes a pro-
posal specifying how benefits will be distributed. A proposal xi is a
distribution xi =

(
xi1, . . . , x

i
n

)
such that

∑n
j=1 x

i
j ≤ 1where x

i
j is the

share that i allocates to voter j. This proposal is then the motion on
the floor. The status quo corresponds to no allocation of benefits,
x = (0, . . . , 0).
Under a closed amendment rule the motion is voted on imme-

diately (against the status quo). If the proposal is approved, the leg-
islature adjourns. If it is not approved, the amount of benefits to be
divided is discounted, and the legislature moves to the next round
and the process repeats itself.
Under an open rule, a member j is selected with probability

pj = 1
n−1 , after a member (i) has been recognized and made

a proposal. This member can accept the motion on the floor, in
which case it is voted on. If the motion on the floor is approved,
the legislature adjourns. Otherwise the benefits are discounted,
the game moves to the next round, and the process repeats itself.
If the motion is amended (by j), the newly selected member (j)
proposes an alternative distribution of benefits, and the legislature
votes between the two proposals. The winning proposal becomes
the motion on the floor; the benefits are discounted; and the
legislaturemoves to the next round. The process repeats itself until
an agreement is reached.
Preferences of member j are represented by the utility function

uj
(
xk, t

)
= ρt−1xkj where t is the round in which the legislature

adopts the distribution xk, and ρ ≤ 1 is the discount factor
intended to reflect time preferences or capture the probability of
re-election. The specific parameter values used in the experiment
were: ρ = 0.8 and n = 5.
Because there are so many equilibria (including multiple sub-

game perfect equilibria), BF focus on stationary subgame perfect
equilibria (SSPE). The SSPE predictions for the parameter values
used in the experiment are presented in Table 1.3 The SSPE for
the closed rule only includes a minimal winning coalition. To see
this, suppose x is the smallest share one would accept to be in a

2 My use of the term election corresponds to Baron and Ferejohn’s use of
legislative session, and rounds corresponds to their use of elections.
3 For a detailed exposition of the equilibrium and its proof, see (Baron and
Ferejohn, 1989).
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Table 1
Theoretical predictions for stationary subgame equilibrium outcome with 5
subjects and a discount factor of 0.8.

Predictions Closed rule Open rule

Number of voters receiving a positive payoff
besides the proposer

2 2

Number of voters receiving zero payoff 2 2
Share to the proposer ($amount – round 1) 0.68 ($17) 0.52 ($13)
Share to coalition members ($amount – round 1) 0.16 ($4) 0.24 ($6)
Probability of proposal being approved in the 1st
round

1 0.5

coalition. Then the proposal
(
1− 2x, x, x, 0, 0

)
, where the first en-

try is the share to the proposer, maximizes the proposer’s utility
since giving to a fourth member does not increase the probabil-
ity of the proposal being accepted and only reduces the proposer’s
share. Proposals are always accepted in round 1. The share that the
proposer takes for herself depends on the number of members and
the discount factor.
Under the open rule, not only does the number of members

and the discount factor affect the distribution of shares, but it also
affects the number of members included in the coalition. Given
the parameters implemented, the SSPE for the open rule is also
one with a minimal coalition. With a minimal winning coalition,
since n−12 members are excluded from the coalition, these excluded
members will amend it. Thus there is a 50% chance that a proposal
will be accepted at every round. The positive probability of being
included in a future coalition increases the continuation value of
the game for the non-proposers, so that they need to be offered
more in order to accept a proposal. This explains why the proposer
keeps a smaller share of the pie in equilibrium.

3. Experimental design

Five subjects were recruited for each experimental session
which consisted of fifteen elections. The amendment rule re-
mained the same within a given experimental session but differed
between sessions (four closed rule sessions and four open rule ses-
sions).4 To minimize the possibility of any repeated play game ef-
fects, at the start of each election each of the five ‘‘legislators’’were
randomly assigned a new subject number. This subject number
was known only to that individual legislator and changed across
elections but not between rounds of a given election.
At the start of each election each subject filled out a proposal

form for allocating $25.00 among the five voters by their subject
numbers. Once the proposal forms were completed and collected,
a roll of a five-sided die was used to determine which proposal
would take the floor. This proposal, along with the subject number
of the proposer, was posted on the blackboard for everyone to see.
In closed rule sessions, each subject would next complete a

voting form indicating whether they accepted or rejected the
proposed division. The voting forms were then collected and
tabulated. If a simple majority accepted the proposal then the
payoff was implemented and the election ended. If the proposal
was rejected, each voter had the opportunity to propose a new
division after applying the discount rate of 0.8 to the total benefits.
(Discounting was done by the experimenters, with the total
amount of money to be allocated in the next round posted on the
blackboard.) Results were posted on the blackboard underneath
each proposal. The blackboard contained information from the last
several elections.
In an open rule session, after a proposal had been selected,

each legislator completed a form either seconding or amending
the standing proposal. When a voter chose to amend a proposal,

4 The first session in each treatment had ten elections. Looking at the data from
these sessions it was clear that behavior was still evolving, so we extended all
subsequent sessions to fifteen elections.
she was required to propose an alternative distribution of benefits.
Although these ‘‘seconding’’forms were collected from everyone
(to preserve the anonymity of the proposer), a roll of a four-sided
die determined which legislator, other than the proposer, would
be recognized to second or amend the standing proposal. If this
legislator seconded the proposal, an election was held following
the same procedures as in the closed rule sessions. If the legislator
amended the proposal, the amended proposal was posted on the
blackboard, alongwith the original proposal, and a run-off election
was held. The winner of the run-off election was the standing
proposal in the next round of the election. Benefits following a run-
off election were subject to discounting, so that the shares in the
standing proposal in the next round of the electionweremultiplied
by 0.8. These shares where posted (in dollar amounts) along with
the total amount of money to be allocated. Each open rule election
continued in this way until a proposal was both seconded and
approved by a simple majority.
Subjects were recruited through announcements in undergrad-

uate classes and advertisements in student newspapers at the Uni-
versity of Pittsburgh and Carnegie Mellon University. This resulted
in recruiting a broad cross section of graduate and undergradu-
ate students from both campuses. At the end of each experimental
session, four elections were randomly selected (by four rolls of a
fifteen-sided die), with subjects paid the sum of their earnings in
the four elections selected. Each subject also received a participa-
tion fee of $5.00.
In each session an additional subject was recruited to roll the

dice. Having a subject roll the dice helps assure subjects that the
outcomes are indeed randomly determined. This subject received
a fixed fee of fifteen dollars.
In each session, practice elections were held first to familiarize

subjects with the procedures and accounting rules. All experimen-
tal sessions were conducted using pencil and paper.5

4. Experimental results

Themain results are organized around three key observations.6

Observation 1. The average share that proposers take for themselves
increases dramatically under the closed rule but decreases slightly
under the open rule.

Although behavior under both rules is very similar at the begin-
ning, it diverges significantly by the end. Specifically, proposers in
the closed rule take more for themselves by the end – an increase
of almost 43% – whereas proposers take slightly less at election 15
than at election 1 under the open rule.

Observation 2. Although proposals at the beginning of the experi-
ment involve supermajorities under both rules, the coalitions at the
end are, more often than not, minimal winning coalitions under the
closed rule.

The data reveal that under both treatments, when they first
begin, the proposals almost always include all subjects in the
coalition; this strategy will be referred to as the ‘‘almost even’’(AE)
strategy. As the sessions evolve, different patterns emerge under
both treatments. In the closed rule, it steadily closes in on the
equilibrium outcome of a minimal winning coalition in which two
voters receive zero, or near zero allocations. The strategy which
almost totally excludes two members will be referred to as the
‘‘almost double zero’’(ADZ) strategy. For the last five elections,
about 67% of the subjects play ADZ, and 29% play AE in round 1. For
the open rule, we see a similar, though not nearly as pronounced,
decline in the popularity of the AE strategy, but it is not replaced

5 Instructions are available at http://homepages.nyu.edu/∼gf35/print/Frechette_
2003a_inst.pdf.
6 The reader interested in more details is directed to Fréchette et al. (2003).
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Fig. 1. Sum of the two lowest amounts.
by the ADZ strategy. Rather, subjects make offers that almost
exclusively include fourmembers in the coalition; this strategywill
be referred to as the ‘‘almost single zero’’(ASZ) strategy. For the last
five rounds 55% of subjects play ASZ, and 40% play even in round 1.7
The evolution described above can be seen more readily by

looking at the sum of the two smallest shares. The sum of the
two smallest shares is an interesting statistic because in both
treatments, the equilibrium prediction is that the sum of the two
lowest amounts should be zero. Fig. 1 presents kernel density
estimates (Silverman, 1986) of the sum of the two smallest shares
(presented in dollar amounts) in round 1 for sets of 5 consecutive
elections. Note that since subjects were dividing $25 per election,
a sum of $10 for the two lowest amounts represents an even split
between all subjects. For the first five elections, the graphs for the
closed and open rules are virtually identical, with most proposals
distributing the money nearly evenly under both the closed and
open rules. However, by the last 5 elections the majority of offers
totally exclude twomembers under the closed rule and even more
proposals are evenly distributed under the open rule.
In summary, the subjects’ behavior in this experiment changes

mainly along two dimensions: the average share the proposers
take for themselves and the number of members included in
the winning coalitions. Further, patterns of play along both these
dimensionswere essentially identical under both treatments at the
beginning.

Observation 3. Voting behavior does not change over time and is
mostly determined by the share one is offered.

One’s share seems to be the only robust factor of major
importance. For instance, simply using the following rule, accept
if my share is greater than or equal to 0.16, can explain 93% of the
closed rule data and 96% of the open rule data. Clearly, there is very

7 These numbers assume that giving somebody $3.00 or less is excluding him
from the coalition. Note that most of these are much closer to zero than three and
that no one votes in favor of such shares. Thus any proposal where the two lowest
shares are $3.00 or less are counted as ADZ, and if only the lowest is $3.00 or less, it
counts as ASZ. The even strategy includes all proposals where the lowest amount is
greater than $3.00. Half of the ADZ offers actually gave exactly zero to twomembers
and 49% of theASZ offers gave zero to onemember. Increasing the cutoffwould have
only a minor impact on the categorization. For instance, changing the cutoff share
from0.12 to 0.16would not change any of the categorization for the closed rule data
while it would increase the fraction of ADZ by one percentage point and decrease
both the ASZ and AE by half of one percentage point.
little room for anything else to matter besides share. This indicates
that little is to be gained empirically frommodeling learning on the
voting side since voting behavior does not evolve over the course of
the experiment. Furthermore, not doing so substantially simplifies
the analysis.

5. Learning & estimation procedure

The learningmodel used in this paper is a two parameter, belief
based learning model in the style of Cheung and Friedman (1997)
which allows learning ranging from Cournot to fictitious play.8
No attempt is made to determine whether this is the best model
within the growing number of learning models available. It is,
however, a fairly standard choice, and as will be seen, it performs
well enough not to prompt looking for an alternative.9 The model
is described in detail below, using the following notation
subject : i ∈ {1, . . . , 5}
proposal types : j ∈ J = {1, . . . , 9}
vote : v ∈ {a, r}
proposer : P ∈ {1, . . . , 5}
where a stands for accept and r stands for reject. The space of
possible proposals is divided into nine representative proposal
types, as explained later.
Throughout, utility is taken to equal monetary payoffs and con-

sequently expected utility to equal expected monetary payoffs.10

8 For more on belief based learning models, the interested reader is referred to
Fudenberg and Levine (1999).
9 Other popular models include Experience-Weighted Attraction or EWA
learning (Camerer and Ho, 1999) and reinforcement learning (Roth and Erev,
1995). This choice is not central to the argument that the estimator of the
variance–covariance matrix should be adjusted. The adjustment that will be
proposed would have similar effect on estimates from alternative learning models
as long as the correlation across error terms is similar.
10 Cooper and Stockman (2002) show how fairness considerations might be
relevant for learning models while Armantier (2006) shows how the evolution of
play in ultimatum games with unequal endowments moves behavior away from
the ‘‘fair’’divisions observed at the beginning of his experiments. In the case of
the current experiment, fairness considerations of the type modeled by Bolton and
Ockenfels (2000) or Fehr and Schmidt (1999) are not likely to be the driving force
for proposal behavior since there is a movement away from ‘‘fair’’distributions of
payoffs. Furthermore, this movement is not the result of efficiency considerations
since the amount divided is unaffected by the distribution of shares. To see how
efficiency might interact with fairness, see Charness and Rabin (2002). Note also
that it is just as ‘‘easy’’to make a ‘‘fair’’offer in either treatment; if there exists an
asymmetry from a fairness perspective, it is on the responder side.
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Subjects have beliefs about the probability of each proposal being
accepted or rejected. These beliefs are represented by weights as-
signed to a proposal being accepted or rejected. Defining 1{·} as an
indicator function which takes on the value 1 if the statement in-
side the bracket is true and 0 otherwise, the weight assigned to the
acceptance (rejection) of a proposal of type j at time t by subject i
is given by:

wtij (c) = (1− δ)w
t−1
ij (c)+ 1

{
v = c and Y ti = j

}
;

c ∈ {a, r} (1)

where c is a dummy variable for accepted (a) or rejected (r), δ is
a forgetting parameter that will be described in more detail later,
and Y ti is the type of the proposal on the floor at time t in subject i’s
session. Thus theweight assigned to the acceptance (rejection) of a
proposal of type j is equal to the weight assigned to its acceptance
(rejection) in the previous round,11multiplied by (1− δ), to which
you add 1 if the proposal on the floor this round was of type j and
was accepted (rejected) and 0 otherwise. The forgetting parameter
δ = 0 if all past actions have equal importance, and if δ = 1,
only the last period of play matters. The former is sometimes
referred to as fictitious play while the latter is known as Cournot
learning or Cournot adjustment. Note that in the open rule, the
type of proposal which is selected in the run-off election (if there
is one) has the weight tied to its acceptance updated by one, and
the defeated strategy’s weight of rejection is updated by one. The
probability assigned to the acceptance of a proposal of type j is
the ratio of the weight put on it being accepted to the sum of the
weight put on its acceptance and the weight put on its rejection;
also known as the strength. Formally, subject i assigns probability
µ that a proposal of type jwill be accepted at time t:

µtij (a) =
wtij (a)

wtij (a)+ w
t
ij (r)

. (2)

Subjects choose to propose a strategy of type j if that strategy
maximizes their subjective expected utility which is equal to the
utility they derive from a proposal of type j, that is uj,12 multiplied
by the probability they assign to its acceptance at that time,µtij (a),
plus the continuation value if that proposal is rejected, C tij, and plus
an error term λεtij where λ is a scaling factor that will be described
shortly. Thus, subject i assigns to a proposal of type j at time t , given
his beliefs about the probability of acceptance of such a proposal,
the subjective expected value

EU ti
(
j | µtij

)
= ujµtij (a)+ C

t
ij + λε

t
ij. (3)

In what follows, it will be assumed that the continuation value
C is the same, at a given time and for a given individual, for all
strategies, that is C ti (j) = C

t
i (s)∀j, s ∈ J .

13 Thus, without loss of
generality, subjective expected utility can be treated simply as

EU ti
(
j | µtij

)
= ujµtij (a)+ λε

t
ij. (4)

11 Clearly this requires weights at time 0, or priors, to get started. These priors will
be estimated from the data, and they are constrained to be strictly positive.
12 Since utility will be treated simply as payoff, one can think of this as the amount
subject i gives herself in a proposal of type j. For estimation, these proposal types
will be categorieswhich cover an interval of amounts to the proposer, and thus they
are approximated by using the average amount proposerswere offering themselves
in proposals of that type.
13 This means that the continuation value of the game is perceived to be the same
regardless of the strategy which is used in the first place. Although this is probably
incorrect, it seems to be a good first approximation. For instance, the fact that
subjects do not change the way they vote across the experiment suggests that they
do not use the information they get to change their estimate of the continuation
value of the game.
For simplicity, ujµtij (a) will be represented by EU
t
ij. It is assumed

that subjects choose j such that EU ti
(
j | µtij

)
is the greatest. The λ

parameter controls for the level of use of available information. If
λ → ∞ then all strategies are equally likely, and as λ → 0, the
model approaches its deterministic version. Thus, if EU

t
ij − EU

t
ik is

re-written as EU
t
i,jk the probability that alternative j is selected at

time t by subject i, denoted ptij, is given by
14

ptij = pr
(
Y ti = j

)
= pr

εti1 < 1λEU ti,j1 + εtij, . . . , εtij−1 < 1λEU ti,jj−1 + εtij,
εtij+1 <

1
λ
EU
t
i,jj+1 + ε

t
ij, . . . , ε

t
iJ <

1
λ
EU
t
i,jJ + ε

t
ij


= pr

[
εtik <

1
λ
EU
t
i,jk + ε

t
ij for all k 6= j

]
. (5)

Let f
(
εti1, . . . , ε

t
iJ

)
= f ti (ε) be the joint density function of ε

t
ij, and

F
(
εti1, . . . , ε

t
iJ

)
the associated cumulative distribution function.

Then

ptij =
∫
∞

−∞

∫ 1
λ
EU ti,j1+ε

t
ij

−∞

. . .

∫ 1
λ
EU ti,jj−1+ε

t
ij

−∞

(6)

×

∫ 1
λ
EU ti,jj+1+ε

t
ij

−∞

. . .

∫ 1
λ
EU ti,jJ+ε

t
ij

−∞

f ti (ε) dε
t
iJ . . . dε

t
i1 (7)

=

∫
∞

−∞

Fj

εtij, 1λEU ti,j1 + εtij . . . 1λEU ti,jj−1 + εtij,1
λ
EU
t
i,jj+1 + ε

t
ij, . . .

1
λ
EU
t
i,jJ + ε

t
ij

 dεtij. (8)

It is often assumed that εtij is distributed with a Type I
extreme value function, which gives rise to the usual logistic
form for the probabilities.15 This paper will diverge from the
usual assumption about the distribution of the error term by
assuming that εtij is independently and identically distributed with
standard normal distribution.16 The PDF and CDF associated with
the standard normal will be denoted φ and Φ respectively. Given
this distribution

ptij =
∫
∞

−∞

φ
(
εtij
) Φ

(
1
λ
EU
t
i,j1 + ε

t
ij

)
. . .Φ

(
1
λ
EU
t
i,jj−1 + ε

t
ij

)
×Φ

(
1
λ
EU
t
i,jj+1 + ε

t
ij

)
. . .Φ

(
1
λ
EU
t
i,jJ + ε

t
ij

)
 dεtij (9)

=

∫
∞

−∞

φ
(
εtij
)∏
k6=j

Φ

(
1
λ
EU
t
i,jk + ε

t
ij

)
dεtij. (10)

Those familiar with Gauss–Hermite integration or with random
effects probit/logit estimation (Butler andMoffitt, 1982)will notice
that this is amenable to such an approximation technique. Using a
change of variable, the above can be re-written as:

ptij =
∫
∞

−∞

1
√
2π
e
−

(
εtij

)2
2

∏
k6=j

Φ

(
1
λ
EU
t
i,jk + ε

t
ij

)
dεtij

14 The derivation below draws heavily on Hausman and Wise (1978).
15 The logistic form would give rise to the following probabilities ptij =
exp

(
1
λ
EU tij

)
∑
J exp

(
1
λ
EU tij

) .
16 This is sometimes referred to as the independent normal as opposed to themore
general multivariate normal distribution. Although the normal distribution is used
in many applications, it has not been used in the estimation of learning models.
There is no obvious reasonwhy the logistic distribution is amore appropriate choice
for this application, and thus showing how onewould use the normal insteadmight
prove useful to researchers who want to compare the two.
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=
1
√
π

∫
∞

−∞

e−
(
rtij
)2∏
k6=j

Φ

(
1
λ
EU
t
i,jk +
√
2r tij

)
dr tij

where : r tij =
εtij
√
2

'
1
√
π

M∑
m=1

wm
∏
k6=j

Φ

(
1
λ
EU
t
i,jk +
√
2am

)
where : wm and am are the quadrature weights
and quadrature abscissas. (11)

The quadrature weights and quadrature abscissas for Gauss–
Hermite integration are available in Abramowitz and Stegun
(1972).
The pseudo-likelihood can be written as

dtij = 1 {Yi = j | t}

ln L =
∑
t

∑
i

∑
j

dtij ln p
t
ij. (12)

5.1. Estimation of the variance–covariance matrix

The data used in learningmodels involves tracking the same in-
dividuals over time. It is a well-known fact that neglecting to ad-
just the variance when using clustered samples tends to lead to
downward bias in the estimated variance. Discussion of this prob-
lemand ofways to correct for it can be found inmany fields and ap-
plications: for example Altonji (1986) andHam (1986) in labor eco-
nomics,Moulton (1986, 1990)) on the use of aggregate variables on
micro data, Beck andKatz (1995) in political science, Deaton (1997)
on the use of survey data, and Ham et al. (2005) in experimen-
tal economics. These examples mainly address problems and cases
which do not use maximum likelihood, but methods proposed in
these papers canbe extended tomaximum likelihood estimation,17
although the interpretation of the results may be slightly differ-
ent.18 Theway in which the interpretation differs will be discussed
below, after giving more specific details about this correction.
The variance–covariance calculation employed allows obser-

vations for a given individual to be correlated with each other.19

The variable we are solving for is θ̂ ≡ argmaxθ ln L (θ; Y ). Let

V̂ (θ) =
(
−∂2 ln L
∂θ2

)−1
, i.e. V̂ (θ) is the conventional (or standard)

estimate of the variance–covariance matrix of the parameter es-
timate θ . Suppose there are I individuals, then the adjusted vari-
ance–covariance is estimated by

ÂV (θ) =
(
I
I − 1

)
V̂ (θ)

(
I∑
i=1

uiu′i

)
V̂ (θ)

where : ui =
∂ ln Li
∂θ

.

In other words, ui is the contribution of individual i to the vector
of scores, and the first term simply is a finite sample adjustment.

17 For instance, Sakata (2002) discusses such estimator in a quasi-maximum
likelihood environment andpoints out that these are relevant for very commondata
sources such as the Current Population Survey, the Panel Study of IncomeDynamics,
and the Health and Retirement Study. The complex sample designs used in the
construction of these data sets imply a violation of the common i.i.d. assumption.
18 For references on such variance estimators applied to pseudo-likelihoods, see
Binder (1983), Greene (2000), pp. 480–491, 823–824, Judge et al. (2000), Skinner
(1989a,b), and StataCorp (2001).
19 Its origin may be traced back to Huber (1967) and a more recent discussion can
be found in White (1994).
Thus, the variance–covariance of the error term – stacked by
individuals – is a block diagonal matrix.20 ÂV (θ) is asymptotically
equivalent to V̂ (θ) if ui is i.i.d. and is a consistent estimator of the
variance if uit is serially correlated with Euiu′i = Ω .
An alternative to using the above adjustment is to assume a cer-

tain form for the unobserved heterogeneity, construct the appro-
priate likelihood function, and maximize it. I adopt this procedure
below, and show that it has a significant effect on the inferences
one draws for the parameter estimates.21

6. Simplifications

Whendiscretizing the continuous proposal space it is inevitable
that arbitrary decisions have to be made. However, the robustness
of the results to these choices can, and will, be tested by compar-
ing the results to sensible alternatives.22 The goal when choosing
how to discretize is to choose a parsimonious representation that
is meaningful. Indeed, each additional proposal type adds one pa-
rameter to be estimated, and could easily lead to overfitting. At the
same time, there must be enough proposal types to capture the
features of the data that are observed. One crucial aspect that will
be exploited is the fact that patterns of play are virtually identi-
cal at the beginning of the experiment under both treatments. This
suggests that subjects have similar priors when they begin play-
ing. This observation, combinedwith the fact that both games have
exactly the same proposal space, allows the priors of the learning
model to be constrained so that they are the same in a meaningful
way. The robustness of the results to these simplifications will be
assessed by re-estimating the model under alternative simplifica-
tions (Section 8).
The simplifications are the following. First, the initial weight of

each proposal type is the same for both the closed and open rules.
In a section on robustness (Section 8) that follows the estimation,
it will be shown that the main results are not affected if this
restriction is relaxed.
Second, the original choices are

(
xi1, x

i
2, x

i
3, x

i
4, x

i
5

)
where xij ∈

[0, 1]∀i, j,
∑5
j=1 x

i
j ≤ 1∀i, xij is the share assigned by proposer

i to player j.23 In what follows, superscripts are omitted for
convenience. These proposed share allocations will be divided into
nine basic proposal types in the following way. Since this paper
is interested in the evolution of proposals that exclude a different
number of subjects under each rule, there will be AE, ASZ, and
ADZ proposal types. These are defined by the values of x4 and x5.
Furthermore, conditional on the proposal being of the AE, ASZ,
or ADZ types, there will be three cases: one where the proposed
average share to coalitionmembers is high, onewhere it is average,
and one where it is low. These are defined by the values of x2 and
x3 for ADZ proposals. It also includes x4 for ASZ proposals, and
it includes all but x1 in the case of AE proposals. These are the
two elements that the simplification of the proposal space tries to
preserve: thenumber of subjects included and the generosity of the
offer to those included. More specifically, a proposal is considered
AE if x4 and x5 are greater than 0.12, ASZ if x5 ≤ 0.12 and
x4 > 0.12, and ADZ if x4 and x5 are both smaller than or equal
to 0.12. To determine if a proposal is high, medium, or low, the
average coalition share is computed, i.e., x2+x3+x4+x54 if a proposal

20 This is, in fact, the sandwich estimator where the data from a given individual
is treated as a super-observation.
21 Recent papers studying individual heterogeneity in the context of a different
learning model (EWA) are Cabrales and Garcia-Fontes (2000) and Wilcox (2006).
22 Discretization is used in virtually all studies of learning with continuous choice
space. For work on estimation without discretization see Armantier (2004).
23 Proposals will always be presented with the highest share to the left and the
lowest to the right.
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Table 2
Proposal types.

Average share offered to coalition members
First tier Second tier Third tier

AE Proposal Type 1 ≤ 0.19 (16) Proposal Type 2(0.19, 0.2] (20) Proposal Type 3 > 0.2 (2)
ASZ Proposal Type 4 ≤ 0.227 (9) Proposal Type 5(0.227, 0.24] (9) Proposal Type 6 > 0.24 (8)
ADZ Proposal Type 7 ≤ 0.28 (17) Proposal Type 8(0.28, 0.3] (9) Proposal Type 9 > 0.3 (10)

Numbers in parentheses are the percentage of play falling in each category.
is AE, x2+x3+x43 if a proposal is ASZ, and x2+x32 if a proposal is ADZ.
The value of the observations for the 33 13 and 66

2
3 percentiles

are obtained, and these determine the cut-offs for the three tiers.
This is presented in Table 2. Let us consider a specific example to
make this clearer. For ASZ, the average share offered to coalition
members corresponding to the 33 13 percentile is 0.227. Thus one
proposal type will be all proposals where one person is excluded
from the division of benefits, and the other three people included
in the coalition receive an average share of 0.227 or less. Looking
only at the average share offered is a clear simplification and could
raise some concerns, but this does not seem to be much of a
problem. Looking at the difference between the highest share and
the lowest share offered to coalition members indicates that both
the mode and median difference is zero. More specifically, 59% of
offers allocate exactly the same amount to all members included in
the coalition (the difference between highest and lowest share is
zero). The average is slightly above zero, more exactly 0.03, which
represents about 75Ń in round one. To increase confidence in the
results, an alternative specification with a finer division of the
proposal space is also estimated. Those results will be presented
in the robustness section.
There is a third restriction also meant to reduce the number of

parameters. Theoretically, belief based learning does not impose a
restriction on the strengths, the sum of the weights on acceptance
and rejection, of the beliefs across proposal types (we will denote
the strength assigned to proposal type j by subject i at time t by stij).
More specifically they do not have to be the same.24However, they
have been constrained to be equal for the first election tomake the
optimization problem more manageable.
As previously mentioned, the priors for both the open and

closed rules are assumed to be the same. This simplification is
motivated by the observation that patterns of play are nearly
identical at the start of the experiment. Thus, throughout this
paper, themain parameter of interest is δ and to a lesser extent λ. δ
defines the learning process: Cournot (δ = 1), fictitious play (δ =
0), or a mixture, while λ gives us a measure of how well subjects
use the information available to them. In the present case λ for the
closed and open rules should be comparable as the decision space
and payoffs are the same under both rules.

7. Estimation results

Before examining the results, let us formulate the hypotheses
of interest. Remember that the original hypothesis that learning
might explain the data comes from the fact that for very similar
proposals (of the ADZ type), subjects receive very different feed-
back under the two treatments. Under the closed rule, these are
passed all the time,whereas under the open rule, they are amended
half the time. Thus Iwill formulate and test twohypotheses, ranked
in order of importance for parameter stability. First, I test if the
same forgetting parameter can account for behavior in both treat-
ments, that is:

24 That is, in general, stij ≡ w
t
ij (a) + w

t
ij (r) 6= w

t
ik (a) + w

t
ik (r) for k 6= j and for

any t .
Table 3
Summary of maximum likelihood estimates with unadjusted (in parentheses) and
adjusted [in brackets] standard errors.

Belief based learning

δ closed 0.258
(0.043)
[0.087]

δ open 0.151
(0.027)
[0.044]

λ closed 0.489
(0.060)
[0.095]

λ open 0.510
(0.088)
[0.193]

Log Lik. −1214.640

H0 : δ closed = δ open. (H1)

Remember that δ defines the learningmodel (Cournot vs. fictitious
play), and thus this is the main test that determines if the hypoth-
esis of a unique learning model can be rejected. Second, it would
also be interesting to know if subjects under both closed and open
rules use information similarly (in addition to using the same for-
getting parameter). Thus, a single learning model with the same
level of use of information can account for the paths of play. This
gives rise to hypothesis 2:

H0 : δ closed = δ open, λ closed = λopen. (H2)

Note that the λ’s cannot always be compared across games, but
since the proposal space is constrained to be the same, they should
be in this case. Let us now turn to the actual estimates.
Table 3 presents the estimation results for the important

parameters.25 First note that estimates of λ are very close. The
δ’s are further apart but still reasonably close with a difference
of about ten percentage points. Second, the estimates of δ are
relatively low, implying a learning process close to fictitious play.
Third, the adjustment to the variance–covariance has a significant
impact: on average it increases the standard errors by an average
factor between 1.5 and 2.0.
H1 and H2 are tested using Wald tests. In both cases, the null

hypothesis cannot be rejected (p-values are 0.254 and 0.195 for H1
and H2 respectively). It is noteworthy however, that both H1 and
H2would have been rejected if it was not for the adjustment of the
variance–covariance matrix. The p-values for these tests are less
than 1% without the correction.
An additional hypothesis that is suggested by the low values of

δ’s is that the learning process observed is fictitious play. Let us

25 The complete results can be found in the Appendix. The estimates were
obtained using the Matlab constrained optimization routine. Other programs that
have been used to compute results reported in this paper are written by Mario J.
Miranda and Paul L. Fackler as part of the COMPECON toolbox (http://www4.ncsu.
edu/∼pfackler/compecon/) and m-files written by James P. LeSage as part of the
Econometrics toolbox (http://www.spatial-econometrics.com/). Other programs to
perform hypothesis testing can be found at http://homepages.nyu.edu/∼gf35/html/
code.htm.

http://www4.ncsu.edu/~pfackler/compecon/
http://www4.ncsu.edu/~pfackler/compecon/
http://www4.ncsu.edu/~pfackler/compecon/
http://www4.ncsu.edu/~pfackler/compecon/
http://www4.ncsu.edu/~pfackler/compecon/
http://www4.ncsu.edu/~pfackler/compecon/
http://www.spatial-econometrics.com/
http://www.spatial-econometrics.com/
http://www.spatial-econometrics.com/
http://www.spatial-econometrics.com/
http://homepages.nyu.edu/~gf35/html/code.htm
http://homepages.nyu.edu/~gf35/html/code.htm
http://homepages.nyu.edu/~gf35/html/code.htm
http://homepages.nyu.edu/~gf35/html/code.htm
http://homepages.nyu.edu/~gf35/html/code.htm
http://homepages.nyu.edu/~gf35/html/code.htm
http://homepages.nyu.edu/~gf35/html/code.htm
http://homepages.nyu.edu/~gf35/html/code.htm
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refer to this hypothesis as H3, that is:

H0 : δ closed = δ open = 0. (H3)

That hypothesis, however, is rejected.
Analysis of the results so far reveals some interesting conclu-

sions. First, the use of a simple adaptive learning model can gen-
erate different paths of play under closed and open amendment
rules that are consistent with what is observed in the experiment.
Second, adjusting the variance–covariance matrix to account for
the panel structure of the data affects the conclusions reached.
Finally, in this experiment, once the panel structure of the data is
taken into account, the hypothesis that a single model can account
for the observed proposals cannot be rejected. Furthermore, that
single model that best fits the data is very close to fictitious play.

8. Robustness of the results

One could worry that the results presented so far are driven by
the specifics of the estimation approach chosen here. Prior studies
of learning have sometimes used other estimation methods. For
instance, it is somewhat common to assume uniform priors over
the strategies (proposal types in this case).26 Others ‘‘burn-in’’the
priors using the frequency of play from the early part of the
experiment.27 One could be concerned that the effects of ÂV (θ)
instead of V̂ (θ) are fragile to such estimation choices, or that
estimates can change enough that results from hypothesis tests be
affected. Table 4 reports estimates when priors are either burned-
in or assumeduniformand the p-values for the hypothesis testsH1,
H2 and H3.When priors are burned-in, the frequency of play in the
first two periods is used. Clearly the effect of using ÂV (θ) instead
of V̂ (θ) is unchanged, namely the standard errors are increased.28
Once again the adjustment affects the results. Specifically, H2
would be rejected if V̂ (θ) was used. Note however, that for the
case of uniform priors, H2 is rejected evenwhen using ÂV (θ). Also,
the fact that the estimates are very similar to the ones reported
in Table 3 suggests that the results are robust. For instance, the
δ parameters are still small and close in value but big enough to
reject the hypothesis of fictitious play. Similarly, the λ’s are small
and close in value. Consequently, we cannot reject the hypothesis
that a unique learning model fits the evolution of play in both of
these treatments, at least in terms of δ.
Other concerns about the robustness of the results might per-

tain to the validity of the simplifications. For instance, the spe-
cific proposal types might affect the results. That is, the division
could be too coarse andmiss some important features. To test this,
the model is re-estimated with a division of the share offered in
quartiles instead of tiers. This generates eleven proposal types and
is described in Table 5.29 Another simplification which can cause
concerns is that of equal priors for the same proposal types in the
open and closed amendment rules. To test this, the model is re-
estimated with different strength and priors for each treatment.
This also allows us to directly test the hypothesis of the equality of
priors. Those results are reported in Table 6. For the case with dif-
ferent priors for each amendment rule, H1, H2, and H3 are tested
jointlywith the equality of priors. Table 6 also reports the results of
the test on the equality of priors by itself. Once again, using ÂV (θ)
instead of V̂ (θ) has a similar effect: standard errors are greater,

26 See for instance Erev and Roth (1998).
27 See for instance Ho et al. (2002).
28 This is not very surprising as only negative correlationwithin clusterwould lead
to smaller standard errors.
29 The value of the 50th percentile observation is the same as the 75th percentile
for the AE strategy. Hence, only one type is defined for these two quartiles.
Table 4
Summary of maximum likelihood estimates with unadjusted (in parentheses) and
adjusted [in brackets] standard errors.

Uniform priors Burned-In priors

δ closed 0.206 0.221
(0.055) (0.049)
[0.108] [0.098]

δ open 0.194 0.185
(0.032) (0.032)
[0.046] [0.049]

λ closed 0.394 0.338
(0.051) (0.038)
[0.083] [0.063]

λ open 0.282 0.268
(0.040) (0.040)
[0.074] [0.088]

Log Lik. −1275.546 −1278.986

H1 (0.842) (0.496)
[0.909] [0.694]

H2 (0.001) (0.005)
[0.034] [0.137]

H3 (0.000) (0.000)
[0.000] [0.001]

For H1, H2, and H3 unadjusted p-values are in Parentheses and adjusted p-values in
square brackets.

and this affects the interpretation of the data. Clearly, the equal-
ity of priors cannot be rejected. It is also clear that changing the
way the proposal types are categorized does not affect the qualita-
tive results. As with the other estimates, a uniquemodel to explain
the data cannot be rejected at any conventional level. The only no-
ticeable difference is that H3 is not rejected at the 10% level when
different priors are allowed, but this is mainly driven by the fact
that here H3 is tested jointly with the assumption of equal priors.
Hence, the results are robust tomany alternative specifications.

This is not to say that the estimates do not vary; the estimates of λ,
for instance, are much higher in the specification with 11 proposal
types than in the others.What ismeant rather is that inmost cases,
the conclusions of hypothesis tests are unaffected by the details of
the specification. In all cases using ÂV (θ) instead of V̂ (θ) increases
the standard errors and affects some of the results of hypothesis
tests. Overall, using the available data and the typical estimator for
such learningmodels with adjusted variance–covariancematrix, it
seems safe to say that a unique learning model is not rejected by
the data, and that this model has low δ’s, although not low enough
to be exactly fictitious play. The low δ’s imply that past outcomes,
not just the most recent ones, affect beliefs.

9. An efficient estimator

The adjustment to the variance–covariance matrix discussed
in this paper, although it provides for a consistent estimator of
the variance–covariance matrix of the usual estimator, it does not
generate efficient estimates. Hence, the observation that we can
no longer reject the null hypothesis that the parameters are the
same for the closed and open rules could be the result of not
having an efficient estimator. In this section, a way to specify the
problem which would account for within subject correlation and
be amenable to estimation is proposed. This will clearly come at
the cost of more restrictive assumptions on the data generating
process.
Two of the simplifications we have made are to assume ev-

ery subject has the same priors and that the strength (the sum
of the weight on acceptance and rejection) is originally the same
for every possible choice. Thus, the strength is the same for ev-
ery choice and every subject before the game begins (remem-
ber that stij ≡ wtij (a) + wtij (r) and this meant s

0
ij = s0j ∀ i).

Instead, we could allow the strength to vary across subjects at
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Table 5
Proposal types.

Coalition type Average share offered to coalition members
1st quartile 2nd quartile 3rd quartile 4th quartile

AE ≤ 0.180 (10) (0.180–0.200] (26) > 0.200 (2)
ASZ ≤ 0.220 (7) (0.220–0.240] (11) (0.240–0.243] (2) > 0.243 (6)
ADZ ≤ 0.260 (11) (0.260–0.300] (16) (0.300–0.320] (7) > 0.320 (3)

Numbers in parentheses are the percentage of play falling in each category.
Table 6
Summary of maximum likelihood estimates with unadjusted (in parentheses) and
adjusted [in brackets] standard errors.

11 Proposal types Different priors across treatments

δ closed 0.131 0.259
(0.029) (0.061)
[0.046] [0.128]

δ open 0.130 0.111
(0.014) (0.037)
[0.025] [0.058]

λ closed 0.969 0.422
(0.132) (0.048)
[0.230] [0.076]

λ open 0.790 0.431
(0.081) (0.137)
[0.142] [0.277]

Log lik. −1251.946 −1193.145

H1 (and (0.979) (0.092)
Equal priors) [0.990] [0.849]
H2 (and (0.070) (0.017)
Equal priors) [0.370] [0.573]
H3 (and (0.000) (0.000)
Equal priors) [0.000] [0.088]
Equal priors n/a (0.561)

n/a [0.991]

For hypothesis tests unadjusted p-values are in parentheses and adjusted p-values
in square brackets.

the beginning, but put some structures on these differences. We
will assume that s0i = s0 + ς0i , and ς

0
i has a lognormal distri-

bution, i.e., ln
(
ς0i
)
∼ N (µs, σs). Now denoting the joint like-

lihood for the data Pr
(
Y | δ, λ,w01 (a) , . . . , w

0
J (a) , s

0, µs, σs
)
=
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0
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)
and the pdf of ς0i by h;

using the assumed distribution of ς0i we obtain:
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0
J (a) , s

0, ς0i
)

×

exp

(
−

(
ln ς0i −µs

)2
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Table 7
Summary of maximum likelihood estimates with standard errors (in parentheses).

Belief based learning

δ closed 0.269
(0.053)

δ open 0.160
(0.040)

λ closed 0.498
(0.100)

λ open 0.411
(0.127)

µs 0.980
(1.886)

σs 2.834
(1.349)

Log Lik. −1207.219

=

N∏
i=1

∫
s0i ∈R+

T∏
t=1

l
(
Y tij | δ, λ,w

0
1 (a) , . . . , w

0
J (a) , s

0, ς0i
)dtij

×
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)2
2σ 2s

)
ς0i σs
√
2π

∂ς0i , (13)

where l
(
Y tij | δ, λ,w

0
1 (a) , . . . , w

0
J (a) , s

0, ς0i
)
is given by (11).

Substituting ς0i = exp
(√
2σsSi + µs

)
in (13) results in an

expression also amenable to Gauss–Hermite integration as is
shown below (the
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where as beforewm and am are the quadratureweights and quadra-
ture abscissas. Taking the natural logarithm of (13) allows us to
sum over the N subjects.
Table 7 presents the estimation results for the important pa-

rameters using the sameproposal types as for the results presented
in Table 3.30 The loglikelihood is substantially improved by allow-
ing for random effects in the prior, and as a consequence, using a
likelihood ratio test, we can firmly reject the hypothesis that there
is no heterogeneity in priors.
Comparing these estimates of δ and λ to those of Table 3

indicates that both δ’s change slightly with a small increase in the

30 The complete results can be found in Table 12 of the Appendix.
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Table 8
Rate of type I and type II errors for simulated data.

No random effects With random
Unadjusted Adjusted effects

Type I H1 0.299 0.177 0.273
H2 0.424 0.371 0.402

Type II H1 0.606 0.765 0.648
H2 0.508 0.566 0.546

difference between the two. λ changes more, and the difference
between them increases significantly. For the four parameters
of interest, the standard errors are greater than the unadjusted
standard errors of Table 3 while three out of four parameters have
smaller standard errors than the adjusted ones from Table 3. As for
ourmain hypotheses H1 andH2: they can all be rejected. Similarly,
H3 can be rejected.
Although improved efficiency is desirable, the impact of using

this more efficient estimator is not clear in small samples. To
illustrate the impact of small samples, aMonte Carlo experiment is
performed. The simulated data is generated under the assumptions
that the learning model is correctly specified (including the
simplifications described in Section 6) and that the distributional
assumptions on the error terms in the estimation are correct.
Two simulated data sets are generated: one with the parameter
values from the estimation with random effects (reported in
Table 7), and one with the δclosed and δopen as well as the λclosed
and λopen set equal to the mid-point between the values of those
same estimates. The simulation results reported will rely on 1000
simulated experiments of the size of those conducted in the
laboratory. Using those, the rate of Type I and Type II errors when
testing H1 and H2 at the 5% level are computed for each estimator.
The results of those simulations are reported in Table 8.31

The first observation is that adjusting the variance–covariance
matrix has the expected effect and reduces the rate of Type I
error. The second observation is that, as expected, the estimator
with random effects improves the rate of Type II error. On the
other hand, this comes at the cost of important increases in Type
I error. Another observation is that the rates of Type I error are all
higher than 5%. This can be substantially improved if the criterion
for rejection is extended to require rejection also with alternative
specifications of the priors, that is uniform and burned-in priors
(as explored in Section 8). In that case, that is if the criterion
for rejection is that the hypothesis must be rejected for all three
specifications, the rates of Type I error fall to 0.04 and 0.16 for
H1 and H2 respectively using the adjusted variance–covariance
matrix (0.04 and 0.20 if one uses the unadjusted). However this
comes at the expense of extremely high rates of Type II error: 0.94
and 0.77 for H1 and H2 respectively. One possibility would be to
use amuchmore restrictive ‘‘nominal’’significance level that yields
an actual rate of type I error of 5%. However, for this particular
simulation, this does not seem promising as one would need to
use a ‘‘nominal’’significance level much below 1% to achieve the
desired rate of type I errors.
Clearly one should not attribute too much to the specific

numbers from this one Monte Carlo experiment as the parameters
would vary depending on the assumptions on the underlying
parameter estimates. For instance, if δ’s and λ’s were assumed

31 The results of the simulations seem fairly stable, even after only 200 repetitions,
the results are very similar to what is reported in Table 8. For instance, results
after 200 simulated experiments for the estimator without random effects are
the following: Type I error rates for H1 are 0.29/0.21 (unadjusted/adjusted), and
0.41/0.34 for H2; Type II error rates for H1 are 0.60/0.72 and 0.52/0.52 for H2. The
differences between those numbers and the ones reported in Table 8 do not have
an important effect on how the results would be interpreted.
to be further apart, the rate of Type I and Type II errors would
improve. Nonetheless, they do highlight the trade-offs at stake and
the limitations imposed by the sample size.

10. Discussion of the results

The overall evolution of proposals can be divided in three com-
ponents. First, there is the fact that in election 1 proposals are sim-
ilar under both amendment rules, and these involve mostly offers
for supermajorities (AE offers). Second, under the closed rule, pro-
posals of the ADZ type become more and more common, and by
the end they represent the majority of proposals. Third, under the
open rule, there is a slight increase in the number of ASZ propos-
als, and there is definitely no gain in popularity of the ADZ kind of
proposals. The fact that behavior in election 1 is almost identical
under both amendment rules is reminiscent of results in bargain-
ing with no or few repetitions. One such result is the near equal
splits in Ultimatum game experiments. In the Ultimatum game, a
subject proposes (roles are usually randomly assigned) to another
a division of a certain amount of money. That subject can either ac-
cept or reject that offer, if he accepts, the division is implemented,
otherwise, they both receive nothing. The subgame perfect Nash
equilibrium of this game is for the proposer to offer (almost) noth-
ing to the other subject, and for that subject to accept the offer.
However, typical offers are in the 40% to 50% range, and offers of
low positive shares are often rejected (see Roth (1995) for a review
of the literature). Binmore et al. (1985) offer this explanation: ‘‘sub-
jects, faced with a new problem, simply choose ‘‘equal division’’as
an ‘‘obvious’’and ‘‘acceptable’’compromise.’’32 They go on to say
‘‘We suspect [...] that such considerations are easily displaced by
calculations of strategic advantage, once players fully appreciate
the structure of the game.’’33 This is, to a certain extent, what is
observed in this experiment. Namely, after starting with obvious
offers in election 1, subjects learn the strategic interactions at play
under each rule, and this leads them, at least under the closed rule,
to make very different offers by the end. Others have argued that
individuals ‘‘have difficulty incorporating the implications of the
committee’s decision rule into their allocation decisions.’’34 Mes-
sick et al. (1997) study a multiparty Ultimatum game (six subjects
per group) where the proposal35 needs either to be accepted by
one of the five responders or by all of the five responders. Subjects
played the game only once. They find that offers are unaffected by
the different rules.36 This is once again similar to the proposal be-
havior observed in election 1. This view suggests that as they repeat
the experiment, subjects are learning, or understanding, the rules
of the game through the feedback they obtain. Given the nature of
the games, they obtain very different feedback, and this iswhy they
make different proposals under both treatments at the end of the
fifteen elections.
One question that arises then is whether a learning model

can account for such evolution, and simply because of the varia-
tions in feedback, would the two rules lead to different paths of
play. The question of parameter stability has received much at-
tention recently in the learning literature. As pointed out by Erev
and Haruvy (2001, 2005), statistical evidence at least dating back

32 Binmore et al. (1985), p. 1180.
33 Binmore et al. (1985), p. 1180.
34 Messick et al. (1997), p. 87.
35 They had two treatments, one where proposals need to allocate the same
amount to everyone but to the proposer himself and one where there was no such
restriction.
36 In the treatmentswhere proposals to others do not have to be the same, they do
find a statistically significant effect of the rules, but it is very small in size. Thus they
claim ‘‘Neither study managed to produce differences in allocation decisions.’’p.97.
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to Stahl (1996) suggest that parameters cannot be pooled across
games. In the case of this experiment, we show that correcting the
variance–covariance to account for the panel structure of the data
affects the conclusions one would reach about parameter stability.
However, when we account directly for this by allowing hetero-
geneity in priors, both hypotheses can be rejected. This suggests
that to account for the evolution of play in this experiment, a dif-
ferent model for each treatment is needed, or in other words, that
the different feedbacks are not, in themselves, enough to generate
the different evolution of play.

11. Conclusion

Experiments on multilateral bargaining with open and closed
amendment rules show that play under the two treatments began
with similar choices but evolved into strikingly different types of
choices over time. This clearly suggests adaptive behavior on the
part of subjects. This view is confirmed by the fitting of a simple
belief based learning model to the data. Furthermore, it is shown
that if the variance–covariance matrix is appropriately adjusted,
the hypothesis that the results from the two different games can
be explained by a unified learning model, a model with the same
key parameters, cannot be rejected. Such learning, although it
lies somewhere between Cournot and Fictitious play, is very close
to the latter. However, if the problem is tackled more directly
by allowing different subjects to have different priors, then the
hypothesis of a unique learning model can be rejected.
More generally, this paper has confirmed what has now been

shown repeatedly, namely that learning models can help explain
experimental data and data on bargaining experiments in particu-
lar. However, when performing hypothesis tests, one needs to ac-
count for the fact that such data involves repeated measures for
the same individuals.37 Away to perform such adjustments is sug-
gested. One drawback of such an adjustment, which is demon-
strated using simulations, is a decrease in power when performing
hypothesis tests. This result extends to other applications where
these types of adjustments, sometimes referred to as clustering,
are performed.
Another solution which accounts for the source of this problem

more directly, i.e., different priors, is also proposed. Although it is
more efficient if correct, it is less robust than the first approach de-
scribed in the paper, namely adjusting to the variance–covariance
matrix. For this particular application, it is also shown that the ef-
ficient estimator results in high rates of Type I error due to the rel-
atively small sample size typical of experimental data sets.
From a broader point of view, these results suggest that the

previously observed variability in parameters might be overstated.
Nonetheless, in the end, we also reject the hypothesis of a single
learning model. One of the key disappointments of learning mod-
els thus far has been that every game seems to require different
parameter values, even for similar games.38 If learningmodels cap-
ture something about how individuals adapt to their environment
and the feedback they get from their actions, then one should not
need to rely on different parameter values for very similar games.
This suggests at least two explanations. Either the two games are
more different then they appear on the surface, or the model is not
appropriately specified in terms of the ‘‘true’’underlying structural

37 This is true even though the current experiment has a relatively low (by
experimental standards) number of observations per subject. As the number of
observations per subject is increased we can expect that the (downward) bias in
the standard errors would become even more important (see Pepper (2002)).
38 I am not suggesting that parameters should be the same for all possible cases.
However one would expect that for similar tasks and environments, parameters
should not vary.
Table 9
Maximum likelihood estimates.

Estimated priors Uniform priors Burned-In priors

δ closed 0.258 0.206 0.221
[0.087] [0.108] [0.098]

δ open 0.151 0.194 0.185
[0.044] [0.046] [0.049]

λ closed 0.489 0.394 0.338
[0.095] [0.083] [0.063]

λ open 0.510 0.282 0.268
[0.193] [0.074] [0.088]

s0 22.520 12.723 11.204
[17.582] [7.990] [8.354]

w01 (a) 8.860
[9.307]

w02 (a) 17.563
[14.186]

w03 (a) 8.972
[11.681]

w04 (a) 8.399
[8.190]

w05 (a) 9.703
[9.085]

w06 (a) 10.066
[11.468]

w07 (a) 7.821
[7.010]

w08 (a) 4.243
[5.793]

w09 (a) 6.265
[6.844]

Adjusted standard errors in square brackets.

Table 10
Maximum likelihood estimates of the priors.

11 proposal types

s0 33.976
[1.289]

w01 (a) 10.809
[1.556]

w02 (a) 23.863
[2.167]

w03 (a) 21.633
[3.725]

w04 (a) 12.092
[0.696]

w05 (a) 15.498
[1.973]

w06 (a) 9.557
[2.410]

w07 (a) 17.845
[3.071]

w08 (a) 9.993
[1.397]

w09 (a) 10.743
[1.073]

w010 (a) 10.126
[1.458]

w011 (a) 8.210
[1.949]

Adjusted standard errors in square brackets.
This table completes the results reported in Table 6.

parameters. For instance, it may be that δ and λ should be func-
tions that depend on the variance in the feedback subjects receive.
Attempts in that directionhave beenmade, for instance, byHo et al.
(2002).
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Table 11
Maximum likelihood estimates of the priors.

Different priors across treatments
Closed Open

Strength 23.056 10.563
[23.312] [12.566]
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PT stands for proposal type.
Adjusted standard errors in square brackets.
This Table completes the results reported in Table 6.
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