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Abstract

We conduct an experimental analysis of selective disclosure in communication.

In our model, an informed sender aims to influence a receiver by disclosing veri-

fiable evidence that is selected from a larger pool of available evidence. Our ex-

perimental design leverages the rich comparative statics predictions of this model,

enabling a systematic test of the relative importance of evidence selection versus

evidence concealment in communication. Our findings confirm the key qualitative

predictions of the theory, suggesting that selection, rather than concealment, is of-

ten the dominant distortion in communication. We also identify deviations from

the theory: A minority of senders overcommunicate relative to predictions, while

some receivers partially neglect the selective nature of the evidence they observe.
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seminar participants at Bocconi University, Brown University, Columbia University, John Hopkins University,

MIT, New York University, Northwestern University, Princeton University, Stanford University, and the Univer-

sity of Pittsburgh for helpful comments.



1 Introduction

This paper presents the results of an experimental analysis of selective disclosure. We study

settings in which an informed sender seeks to influence the actions of an uninformed receiver

by disclosing selected evidence. This form of selective communication is pervasive in practice.

For instance, a journalist may select the news events to report depending on how they reflect on

a political candidate; a defense lawyer may select the evidence to present in court in an attempt

to increase the chance of acquittal; a firm may choose specific features of its product portfolio

to advertise to customers.1 These settings share the following characteristics: The evidence is

verifiable (i.e., the sender cannot fabricate it) but possibly noisy (i.e., it is imperfectly informa-

tive); furthermore, it may be selected by the sender from a larger pool of available evidence.

Thus, the interpretation of the disclosed evidence depends on the context—namely, how it was

selected by the sender. This selection ultimately determines how effectively the sender and the

receiver can communicate.

The disclosure of verifiable evidence is a centerpiece of the economic analysis of the po-

tential distortions caused by asymmetric information, with numerous applications to financial

economics, accounting, and industrial organization (for reviews, see Verrecchia (2001), Mil-

grom (2008), Dranove and Jin (2010), and Beyer et al. (2010)). The benchmark result in this

literature—the unraveling principle—argues that if the sender can verifiably disclose the avail-

able evidence, she will do so, regardless of how favorable it is. According to this prediction,

communication helps resolve the initial information asymmetry. The disclosure literature has

largely focused on documenting and explaining a key deviation from this benchmark: The ten-

dency of senders to conceal unfavorable evidence.2 This behavior causes distortions, as senders

undercommunicate relative to the unraveling benchmark, allowing the information asymmetry

to persist. These distortions justify the adoption of disclosure mandates, which are common in

many contexts.3

In this paper, we shift the emphasis away from distortions caused by the concealment of ev-

idence and focus instead on a less-studied aspect of the problem: distortions arising from the

1Prat and Strömberg (2013) and Gentzkow et al. (2015) argue that selective disclosure is in practice one of
the principal sources of media slant, which they refer to as “filtering” or “fact bias.” Koehler and Mercer (2009)
illustrate how mutual fund companies selectively advertise their better-performing funds.

2Starting from Dye (1985), several theoretical models have explained why concealment might occur in equi-
librium. In the empirical literature, excessive concealment has been documented both in the field and the labora-
tory (see, e.g., Mathios, 2000; Jin and Leslie, 2003; Bertomeu et al., 2020; Jin et al., 2021).

3In the United States, for instance, regulations may require restaurants to display sanitary grades and calorie
counts, publicly traded companies to disclose financial statements, and real estate sellers to reveal specific property
conditions.
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sender’s ability to select which evidence to disclose. This shift in focus may lead to a corre-

sponding change in policy recommendations. Our experimental analysis is informed by a the-

ory of selective disclosure that provides rich comparative statics, whereby we vary the quantity

of evidence available to the sender and how much of it can be disclosed to the receiver. These

comparative statics results enable a systematic test of the strategic forces driving selective dis-

closure.

Our model, building on Milgrom (1981), features a sender who privately observes the state

of the world and the realization of N independent signals (or evidence), which are informative

about the state. The sender can verifiably disclose up to K of these signals to a receiver. In

this context, N represents how much evidence is available to the sender, and K represents the

communication capacity of the environment (e.g., the number of stories a newspaper can print).

The receiver observes the disclosed signals and takes an action. The receiver’s objective is to

match her action to the state, while the sender wishes to persuade the receiver to take a higher

action, regardless of the state. We show that in our setting, an equilibrium exists in which the

sender discloses the K highest signals among those she observes. This equilibrium reflects the

sender’s incentives to be selective and disclose the most-favorable evidence at her disposal.

The interplay between concealment and selection of evidence shapes the strategic interaction

between the sender and the receiver in our setting. Notably, their relative importance changes

as we vary N and K. When K = N, evidence can only be concealed, not selected, as in a

classic disclosure setting. Conversely, when N is large relative to K, selection is likely to be

the dominant distortion: The sender can disclose highly favorable evidence regardless of the

state, similar to a cheap-talk setting. Thus, by varying K and N, this model accommodates

forces typical of two opposite communication paradigms: verifiable disclosure (e.g., Milgrom,

1981; Grossman, 1981) at one extreme and cheap talk (e.g., Crawford and Sobel, 1982) at the

other. These extremes have been analyzed separately in the experimental literature, leading to

contrasting findings that, as explained below, our hybrid setting can help reconcile.

Our experimental analysis is guided by the rich comparative static predictions that arise from

varying K and N. As N increases relative to K, the sender should disclose more-favorable

evidence. This endogenous selection should make receivers more skeptical of any message

as N increases or K decreases. The behavior of both the sender and the receivers jointly

determines the informativeness of the equilibrium, which we define as the correlation between

the state and the receiver’s action. Holding N constant, the informativeness should increase

in K. Instead, holding K constant, the informativeness may be nonmonotone in N, but it

should necessarily decrease to zero as N becomes large. These predictions stem from a balance
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between two forces, which we explore in our experiment: On the one hand, a larger N allows

the sender to be more selective, decreasing equilibrium informativeness; on the other hand,

it gives the sender more latitude to effectively communicate the state, potentially increasing

informativeness.

In our experimental treatments, we vary K and N, leaving all the other parameters un-

changed. We consider two values for K (namely, 1 and 3) and three values for N (namely, K,

10, and 50), for a total of six treatments. These treatments allow us to test the full range of pre-

dictions outlined above, providing a sharp and systematic evaluation of the theory.

We begin the data analysis by documenting several patterns in senders’ behavior that are

consistent with the key qualitative predictions of the theory. First, we find that senders disclose

more favorable signals as N increases relative to K. Indeed, a large number of senders play the

exact equilibrium strategies most of the time. We then discuss senders’ informativeness, that

is, the amount of information contained in senders’ strategies. We find that, for all treatment

variations of K and N, senders’ informativeness moves in the directions predicted by the theory,

although, in some cases, these movements are not statistically significant.

Next, we document the main quantitative deviations in senders’ behavior. First, when N =

K, we observe concealment of evidence, consistent with prior disclosure experiments. When

N > K, however, senders rarely conceal evidence: Concealment is no longer the dominant

distortion, as senders predominantly use selection to influence the receiver’s behavior. Sec-

ond, we find that senders’ strategies are more informative than predicted—that is, senders

overcommunicate—especially when N is large. This is in contrast to most of the prior experi-

mental literature on verifiable disclosure, which finds undercommunication. Instead, it is con-

sistent with findings from a different experimental literature, that on cheap talk (see, e.g., Cai

and Wang (2006)). Our hybrid framework helps reconcile these seemingly divergent findings.4

Overall, the fact that senders rarely conceal evidence and often overcommunicate suggests that,

in settings with ample opportunities for selection, mandating disclosure may be ineffective or

even harmful for receivers.

To understand these departures from the theory, we analyze senders’ behavior at the individ-

ual level by performing a clustering analysis. In all treatments, the predominant cluster plays

strategies that are close to equilibrium. However, we identify a minority cluster that persis-

tently displays behavior that we call deception averse: When the state is high, these senders

4Models studied in the experimental literature on disclosure typically predict full information transmission
(i.e., unraveling), making it impossible to observe overcommunication (see de Clippel and Rozen (2024) for an
exception). In contrast, models studied in the experimental literature on cheap talk do not typically predict full
information transmission.
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disclose the most favorable signals available; when the state is low, however, they consistently

fail to do so. This behavior can be interpreted as a particularly stark form of lying aversion:

When the state is low, deception-averse senders refrain from disclosing high signals that could

deceive the receiver into thinking that the state is high. These senders are thus responsible for

overcommunication because their state-dependent behavior increases the average informative-

ness of senders’ strategies.

Finally, we analyze receivers’ behavior. Consistent with the qualitative predictions of the

theory, we find that receivers partially account for the fact that the evidence they see may be

selected. Specifically, conditional on the received message, they become more skeptical (i.e.,

their guess decreases) as N grows relative to K. However, the magnitude of these treatment

effects is smaller than predicted: In all treatments, receivers tend to be overly optimistic—

namely, their guesses are suboptimally high. Additionally, their mistakes are greater in treat-

ments with large N, that is, those in which selection is predominant. In other words, receivers’

behavior displays some degree of selection neglect: Receivers do not entirely account for the

impact of selection, leading them to insufficiently discount favorable evidence in settings with

large N. Selection neglect has been widely documented in the realm of decision problems.5

Our findings highlight the significance of this bias in a strategic setting, where selection arises

endogenously from the desire of the sender to manipulate the receiver’s behavior.6

1.1 Related Literature

The basic structure of our model can be traced back to Milgrom (1981). He shows that, for

any N and K, when the signal distribution is atomless, there exists a maximally selective equi-

librium, that is, one in which the sender discloses the K highest signals. An important, albeit

technical, difference from Milgrom’s model is that we assume signals to be discrete. This mod-

eling choice simplifies the experimental design for the subjects but complicates the analysis,

requiring a novel existence proof. In the simplest setting where K = 1 and signals are binary,

Fishman and Hagerty (1990) show that the informativeness of the maximally selective equilib-

rium need not be monotone in N and provide conditions under which it eventually converges

to zero. We extend their results to settings with arbitrary K and nonbinary signals. Di Tillio

et al. (2021) also allow for arbitrary K but, as in Milgrom (1981), their signals take a contin-

5For instance, see Esponda and Vespa (2018), Enke (2020), Araujo et al. (2021), Barron et al. (2024).
6A priori, it is not obvious how selection neglect would transfer to a strategic setting. On the one hand, the

presence of strategic uncertainty could exacerbate the bias by making the inference problem more difficult for the
receiver. On the other hand, it could reduce the bias by making the selection forces more salient for the receiver,
as they stem from a sender with clearly conflicting preferences.
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uum of realizations. They provide conditions on the signal distribution under which the infor-

mativeness of the maximally selective equilibrium is monotone in N. Their results do not ap-

ply to our setting due to the discreteness of the signal space.7

Our paper contributes to the large body of experimental literature on the verifiable disclo-

sure of evidence. One robust finding in this literature is that senders undercommunicate rela-

tive to the theoretical predictions, that is, the failure of the unraveling principle. For instance,

in the laboratory, Jin et al. (2021) find that receivers are insufficiently skeptical when senders

do not provide any information, which in turn leads senders to undercommunicate by conceal-

ing unfavorable evidence. In the field, Mathios (2000) and Jin and Leslie (2003) find excessive

concealment in the context of food nutrition labels and hygiene grade cards in restaurants.8

In stark contrast, the experimental literature on cheap talk typically finds that senders over-

communicate relative to the predictions and that receivers are overly trusting.9 Cai and Wang

(2006) ascribe this deviation to lying aversion. As discussed above, our hybrid setting helps us

reconcile the apparent puzzle between overcommunication and undercommunication.

The experimental research on selective disclosure is in its early stages. The studies most

closely related to our work are Brown and Fragiadakis (2019) and Degan et al. (2023), who

compare a treatment in which evidence is strategically selected to one in which it is selected

randomly. These studies do not explore treatment variations in K and N, which are central to

our approach. Further from our work is Penczynski et al. (2023), who investigate how compe-

tition among senders affects which evidence they disclose. Finally, Burdea et al. (2023) exam-

ine a scenario where a sender transmits a two-dimensional message to a receiver, but only one

dimension can be verified. Their main treatment variation (inspired by Glazer and Rubinstein

(2004, 2006)) involves changing who controls which of the two dimensions is verified—the

sender or the receiver.
7Shin (2003), Glazer and Rubinstein (2004), Glazer and Rubinstein (2006), Dziuda (2011), Hoffmann et al.

(2020), Haghtalab et al. (2024), and Gao (2024) also study models with selective disclosure, although in settings
more distant from ours.

8Forsythe et al. (1989), King and Wallin (1991), Dickhaut et al. (2003), Forsythe et al. (1999), Benndorf et al.
(2015), Hagenbach and Perez-Richet (2018), Deversi et al. (2021), Jin et al. (2022), Fréchette et al. (2022), Farina
and Leccese (2024), and Hagenbach and Saucet (2024) also document instances of excessive concealment of
evidence relative to theoretical predictions, although their primary focus varies.

9Blume et al. (2020) review this literature. Influential papers include Dickhaut et al. (1995), Blume et al.
(1998), Forsythe et al. (1999), Blume et al. (2001), Sánchez-Pagés and Vorsatz (2007), Wang et al. (2010), and
Wilson and Vespa (2020).
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2 Theory

2.1 Model

Our model closely builds on Milgrom (1981). We examine the interaction between a privately

informed sender and an uninformed receiver. The sender observes an underlying state of the

world and N signals realizations, which are informative about the state. She can verifiably dis-

close up to K of these signals realizations to the receiver, who then chooses an action affecting

the payoff of both players.

Formally, the sender privately observes a state θ, which belongs to a finite subset Θ ⊆
R. The state is distributed according to a distribution p ∈ ∆(Θ), which has full support.

The sender also privately observes the realization of N conditionally independent signals s̄ =

(s̄1, . . . , s̄N). Each signal s̄i belongs to a finite and ordered set S and is distributed according to

a distribution f (·|θ) ∈ ∆(S), which has full support. We assume that f satisfies the monotone

likelihood ratio property, namely, f (s|θ′)
f (s|θ) is strictly increasing in s ∈ S for all θ′ > θ.

The sender can verifiably disclose up to K ≤ N of the N signals. The vector of disclosed

signals forms the sender’s message, denoted by m. We assume that the receiver does not ob-

serve the original positions of the disclosed signals in s̄. Given this assumption, it is exposi-

tionally convenient to define m as a decreasing vector of length K: The k ≤ K signals dis-

closed by the sender are placed at the beginning of m in decreasing order, whereas the remain-

ing K − k positions, representing the undisclosed signals, are filled with o. Let M be the set

of all messages and M(s̄) ⊆ M be the set of messages that can be sent given s̄ ∈ SN.10 After

observing the message m, the receiver chooses an action a ∈ A := R. The sender’s payoff is

v(θ, a) = a, and the receiver’s payoff is u(θ, a) = −(a − θ)2.

A strategy for the sender is a mapping σ : Θ × SN → ∆(M), subject to the verifiability

requirement m ∈ M(s̄) for all s̄. A strategy for the receiver is a mapping ξ : M → ∆(A).

The relevant solution concept is perfect Bayesian equilibrium (PBE).

Discussion. The model describes situations in which the sender can disclose only a limited

amount of noisy evidence. No message can verifiably reveal the payoff-relevant state θ. More-

10Formally, the message space is M := {s̄ ∈ Sk × {o}K−k | 0 ≤ k ≤ K and s̄i ≥ s̄j for i ≤ j}. Given s̄, the
set of messages that can be sent is M(s̄) := {o}K ∪ {m ∈ M | ∃ 1 ≤ k ≤ K and injective ρ : {1, ..., k} →
{1, ..., N} s.t. mi = s̄ρ(i) for i ≤ k and mi = o for i > k }. For instance, if the sender discloses no signals, her
message is m = (o, . . . , o). This message is always available to the sender. If instead the sender discloses k < K
signals, her message is m = (s1, . . . , sk, o, . . . , o), the first k components of which appear in s̄ and are ordered in
a decreasing way.
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over, when K < N, no message can verifiably reveal s̄. This contrasts with most of the liter-

ature on information disclosure, in which it is typically assumed that a sender can verifiably

reveal her private information if desired.11 As a consequence, equilibria in our setting are par-

tially informative of the state. This is a key feature of our setting since it implies that changes

in K and N give rise to nontrivial comparative statics in how informative the equilibrium is.

We will exploit these variations in our experiment.

In the model, N and K are exogenous. Although, in some settings, the players may be able

to influence N and K, our modeling choice is intended to focus our experimental analysis

on the selection of evidence, abstracting from distinct aspects of the problem, such as the

production of evidence or the costs of disclosure. Note that when K < N, the sender faces a

communication constraint. This could be due to, for instance, limits on the number of columns

a newspaper has available for a given topic, or the airtime for a TV show, or the amount of

news the audience can assimilate in a given time span.

2.2 Equilibrium Predictions

Unlike in the typical disclosure setting, the constraints on the sender’s ability to verifiably dis-

close her private information lead to the existence of multiple equilibria. Our analysis focuses

on a class of equilibria in which the sender discloses the most favorable evidence available. In

these equilibria, which we call maximally selective, the sender discloses the K-highest available

signals, unless any of these signals is the lowest element in S; in that case, the sender may either

disclose or conceal any of them, with both choices consistent with this class of equilibria.12

Proposition 1. (Existence) For all N and K, there exists a perfect Bayesian equilibrium in

which the sender’s strategy is maximally selective.13

We focus on maximally selective equilibria for two reasons. First, this equilibrium has been

the focus of several influential papers (see, e.g., Milgrom (1981), Fishman and Hagerty (1990),

and Di Tillio et al. (2021)). Second, for any K, this equilibrium is unique in the class of

11Okuno-Fujiwara et al. (1990) show that such an assumption is needed for complete information transmission.
12Formally, we extend the order on S to the set S ∪ {o}, by assuming that min S and o are minimal elements

in such a set. Then, we endow M with the partial order m ≥ m′ if component-wise mi ≥ m′
i for each i ∈

{1, . . . , K}. Notice that, for each s̄, M(s̄) has at least one maximal element (in fact, it is a lattice). A sender’s
strategy is maximally selective if, for all (θ, s̄) and m ∈ supp (σS(·|θ, s̄)), m is a maximal element of M(s̄).

13This result extends Milgrom (1981, Proposition 7) to the case of discrete signals. This modeling choice—
which simplifies the experimental design—complicates the theoretical analysis and requires a different existence
proof, which has a combinatorial nature. Fishman and Hagerty (1990) also feature discrete signals but avoid these
complications by assuming K = 1 and binary S.
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“evidence-monotone” PBEs, namely, equilibria in which the receiver responds more favorably

to messages that are more favorable.14

The model offers several predictions regarding the behavior of senders and receivers. Some

of these predictions immediately follow from the fact that the sender employs a maximally

selective strategy. We summarize these in the following remark and then offer some discussion.

Remark 1. Main predictions regarding players’ behavior:

1. Sender’s Behavior. The distribution of signals disclosed by the sender increases in a first-

order stochastic sense with N and decreases with K. Moreover, the number of disclosed

signals increases with K and is independent of N.

2. Receiver’s Behavior. Fix K and consider any message on the equilibrium path for both

N and N′, with N < N′. The receiver’s response to such a message is higher in N than

in N′.

Regarding the sender’s behavior, the model makes predictions on the quantity of signals

disclosed by the sender—which should increase in K—as well as on their quality: better (i.e.,

higher) signals are disclosed when N is higher, while worse signals are disclosed when K is

higher. Intuitively, when N is larger, the sender can be more selective, resulting in messages

that appear more favorable. Conversely, when K is larger, the sender is compelled to disclose

more signals to avoid the negative inference the receiver would make about signals the sender

did not disclose. This forces the sender to become less selective, resulting in messages that

appear less favorable. Regarding the receiver’ behavior, the model predicts that, fixing any

message m, the receiver should become more skeptical as N increases. To gain intuition, fix K

and note that, as N increases, for any realization of the state θ, the sender’s best K signals are

likely to be higher. Thus, when N increases, the same message m should be perceived more

skeptically by the receiver.

The behavior of the sender and the receiver jointly determines how informative the equilib-

rium is. We define equilibrium informativeness as the correlation between the state θ and the

receiver’s action a, which we denote by I(K, N). The greater the value of I(K, N), the more

effectively the receiver learns about the state θ from the messages disclosed by the sender.15

14Specifically, in an evidence-monotone PBE, if m′ > m, the receiver’s action following message m′ is higher
than that following message m. See Appendix A for details. A feature of this refinement is that it is directly
testable with the data: In 90% of the cases, across treatments and observed message pairs where m′ > m, the
average receivers’ action following m′ is higher than that following m.

15Equilibrium informativeness is a monotone transformation of the receiver’s ex ante expected payoff (see
Online Appendix E.3).
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Changes in K and N generate rich comparative statics in the equilibrium informativeness,

which we exploit in our experimental analysis.

Proposition 2. As K and N vary, equilibrium informativeness I(K, N) changes as follows:

i. Fixing N, I(K, N) increases in K.

ii. Fixing K = N, I(K, N) increases in N.

iii. For any given K, I(K, N) converges to zero as N increases. Moreover, I(K, N) need

not be monotonic in N.

We briefly discuss the intuition for these results. First, we fix N and increase K, thereby

relaxing the communication constraint on the sender. In this case, it is more likely that, for

a given θ, the sender can send messages that lower-state senders cannot imitate, allowing for

more separation. This implies that more information is transmitted in equilibrium, leaving the

receiver less uncertain about the state. Second, we let K = N and consider the effects of

increasing N when all the available evidence can be disclosed. In this case, the sender discloses

all the signals in a nonselective manner. Thus, as N increases, the receiver observes more i.i.d.

signal realizations, which increases equilibrium informativeness. Third, holding K constant,

as N approaches infinity the full support assumption on f implies that, for all θ, the sender

can disclose the most favorable message with a probability approaching one. This implies that

there is no separation among different θs in equilibrium and, consequently, no possibility for

the receiver to learn.

The nonmonotonicity in Proposition 2.(iii) stems from a balance between two forces, which

we explore in our experiment. On the one hand, an increase in N increases the probability

that a low-state sender can disclose more favorable signals, since now she can afford to be

more selective. This leads to more pooling and, thus, contributes to lower informativeness. On

the other hand, a higher N also increases the probability that a high-state sender can disclose

signals that are more favorable. This allows such a sender to separate herself from the low-

state counterpart, contributing to higher informativeness.16

16Online Appendix E.4 presents a simple example with a binary state and signals that isolates these two con-
trasting forces, providing intuition as to why equilibrium informativeness need not be monotone in N. In gen-
eral, which force prevails depends on the relative rate at which the above-mentioned probabilities increase in N,
for each state. Characterizing these effects is demanding and beyond the scope of this paper. See Fishman and
Hagerty (1990) for the case in which K = 1 and the state and signals are binary.

9



Table 1: The distribution f (s|θ) used in the experiment.

Composition of the Urns

s = A s = B s = C s = D

θ = 0 (Yellow Urn) 10% 20% 25% 45%
θ = 1 (Red Urn) 45% 25% 20% 10%

3 Experimental Design

This section describes the laboratory implementation of our model and our design choices.

The experiment implements an instance of the model described in Section 2.1 with a binary

state and four possible signal realizations. We use unframed and nontechnical language. There

is an urn that can be red (i.e., θ = 1) or yellow (i.e., θ = 0) with equal probability. Each urn

contains balls labeled with four different letters—A, B, C, or D—representing the possible

signal realizations. The composition of each urn depends on its color, as shown in Table 1:

This represents the distribution f (s|θ) used in the experiment.

The interaction between the sender and the receiver unfolds in two stages. In the first stage,

the sender privately observes the color of the urn (i.e., the state) and the letters on N balls

drawn randomly from the urn with replacement (i.e., the realizations of the signals). She then

discloses up to K of these balls to the receiver. In the second stage, the receiver observes which

balls have been disclosed by the sender, and takes an action a ∈ [0, 1], which we refer to as the

receiver’s guess. The sender and the receiver earn points that are converted into cash at the end

of the experiment. Given a, the sender earns 100a points. The receiver, instead, earns either

0 points or 100 points, depending on her guess a and the underlying state θ. As explained

below, the probability the receiver wins 100 points increases with the accuracy of her guess a,

incentivizing her to truthfully report her subjective belief that θ = 1.

At the beginning of each session, instructions are read aloud and the recruited subjects play

two practice rounds to familiarize themselves with the game and the graphical interface (see

Online Appendix F for screenshots of the interface). Subjects are then randomly assigned

a fixed role—sender or receiver—and play 30 rounds of the game in that role. Sender and

receiver pairs are randomly rematched in each round. At the end of every round, subjects are

presented with the same feedback: the state, the signals that were available to the sender, the

message sent, the receiver’s guess, and their respective payoff.

We conducted six treatments that only differed in the values of K and N, with four sessions
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Table 2: Our 2x3-factorial design and the treatments’ denominations.

N = K N = 10 N = 50

K = 1 (K1, N1) (K1, N10) (K1, N50)

K = 3 (K3, N3) (K3, N10) (K3, N50)
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Figure 1: Predicted informativeness for the six treatments.

per treatment. The chosen combinations of K and N are reported in Table 2: K is either 1 or

3 and, for each K, N is either equal to K, 10, or 50. Figure 1 reports the specific treatment

predictions of I(K, N) under this implementation. This choice of treatments allows us to test

the full range of the predictions outlined in Proposition 2.

Population. In each session, an average of 17.25 subjects participated; the number of subjects

ranged from a minimum of 12 to a maximum of 24. In total, 414 subjects participated in our

experiment: each one participated in a single treatment (a between-subjects design). Subjects

were students recruited from the undergraduate populations at Columbia University and New

York University in 2023. Two sessions per treatment were conducted at the laboratory facilities

of each institution.17

Earnings. On average, a session lasted 75 minutes and each subject earned $30.51 (from a

minimum of $18.41 to a maximum of $37.66), which included a $10 show-up fee. Subjects

accumulated points that were converted into cash at the end of the experiment. The conversion

17The experimental interface was designed with the software oTree (Chen et al., 2016). Subjects were recruited
at New York University using hroot (Bock et al., 2014) and at Columbia using ORSEE (Greiner, 2015).
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rate was $1.20 for 100 points for senders and $0.90 for 100 points for receivers. The different

conversion rates aimed to minimize the differences in expected payoffs between the two roles.

Belief Elicitation. Since the state is binary, the receiver’s quadratic payoff makes her task

equivalent to a belief elicitation via the quadratic scoring rule (Brier, 1950). This is imple-

mented in the experiment using the binarized scoring rule (Allen, 1987; McKelvey and Page,

1990; Schlag et al., 2015; Hossain and Okui, 2013). This rule determines the likelihood that a

receiver wins 100 points based on their guess and the realized state; and is robust to risk pref-

erences. We follow the implementation procedure outlined in Wilson and Vespa (2018) and

our choices are in line with the recommendations in Healy and Leo (2024) (see also Danz et al.

(2022)).

Observable State and Discrete Signals. We note two design choices, which are reflected in

our model. First, the sender observes the state θ, allowing for a clearer comparison between

treatments as we increase N. This ensures that any differences in senders’ behavior must orig-

inate from their greater ability to select (which is the focus of this study) rather than from hav-

ing more information about the state due to the observation of additional signals. Second, sig-

nals are discrete. This allows for a design that does not require specifying probability densities.

We chose four possible signal realizations to keep the sender’s problem nontrivial, as a poten-

tially rich set of deviations from equilibrium can occur in this case. Incidentally, the observ-

ability of the state and the discreteness of the signals are the two main theoretical differences

between our model and Milgrom (1981) and Di Tillio et al. (2021).

Measuring Informativeness in the Data. We measure the informativeness of communication

as the correlation between the realized state and the observed receiver’s action. This measure

combines the behavior of both senders and receivers. In our analysis, it will sometimes be

useful to isolate the informativeness of the senders’ strategies—i.e., to net out receivers’ mis-

takes. We do so by computing the correlation between the state and the guess of an idealized

Bayesian receiver who optimally responds to senders’ average behavior in the treatment. We

refer to the resulting measure as the informativeness of the senders’ strategies, or simply the

senders’ informativeness, denoted IB(K, N). An identical decomposition technique is used in

Fréchette et al. (2022).

Statistical Tests and Predictions. Our analysis focuses on data from the last 15 rounds of

each session, to allow enough time for subjects to learn their environment.18 Unless stated oth-

18Appendix C.1 illustrates that there are trends in behavior over the course of the sessions. In many treatments,
senders become more selective and the receivers become more skeptical. For a discussion on the rationale behind
focusing on later rounds in experimental economics, see Fréchette et al. (2024).
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erwise, our statistical tests are performed as regressions with subject-specific random effects

and clustered standard errors at the session level (see Fréchette (2012) and Embrey et al. (2018,

Appendix A.4) for a discussion of issues related to hypothesis testing for experimental data).

Additionally, when comparing outcomes in our data against theoretical outcomes, such as in-

formativeness, we take into account the finite nature of our dataset. That is, the theoretical out-

come is computed for the realized signals s̄ in the experiment. This ensures better comparabil-

ity with the data.

Robustness to an Alternative Design. Online Appendix D presents the results from an alter-

native design that is complementary to the one just described. This alternative design consid-

ers a setting with a nonbinary state and a binary signal, instead of a binary state and a nonbi-

nary signal. Additionally, beliefs are elicited in a different manner, i.e., by using the quadratic

scoring rule. There are three between-subject treatments, varying K and N, each with five ses-

sions. Despite these differences, the conclusions drawn from this alternative design are, in the

dimensions that are comparable, very similar to those that we describe in the following section.

4 Results

We organize our results in two parts. Section 4.1 focuses on senders’ behavior: We study what

evidence senders disclose (Section 4.1.1), how much information they transmit to receivers

(Section 4.1.2), and the strategies they play (Section 4.1.3). Section 4.2 focuses on receivers’

behavior: We study how receivers respond to the disclosed evidence (Section 4.2.1), focusing

on the extent to which they account for selection (Section 4.2.2). We conclude by evaluating the

consequence of their behavior on the overall informativeness of communication (Section 4.2.3).

4.1 Senders’ Behavior

4.1.1 What Evidence Do Senders Disclose?

In this section, we test simple but consequential comparative static predictions that are inspired

by Remark 1: How much and which evidence do senders disclose, and how does it change with

K and N?

To begin, we examine how much evidence senders disclose. Table 3 shows the average

number of disclosed signals as a fraction of K in each treatment. We emphasize two aspects

of this table. First, in treatments with N = K, i.e., those without selection opportunities, the
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Table 3: The average number of signals disclosed as a fraction of K.

N = K N = 10 N = 50

K = 1
Data 66% 100% 100%

Predictions [78%, 100%] [100%, 100%] [100%, 100%]

K = 3
Data 63% 95% 97%

Predictions [73%, 100%] [99%, 100%] [100%, 100%]

Equilibrium predictions do not uniquely specify what a sender should do if a
D signal is among the K-highest elements in s̄. This gives rise to a range of
predictions, as reported in the table.

number of disclosed signals is significantly smaller than predicted (p-value < 0.01). That is,

senders conceal some of the evidence and, thus, the unraveling principle fails. This result is

consistent with one of the central distortions documented by the existing experimental literature

on disclosure (e.g., see, Jin et al. (2021)). Mandating disclosure would resolve this distortion.

However, notice that the number of disclosed signals increases in N (p-value < 0.01 for the

changes from N = K to N > K). When N is large, indeed, senders rarely conceal evidence.

In these cases, mandating disclosure would thus be ineffective.

The first-order questions should then concern which evidence senders select to disclose and

how informative it is. We begin by showing that several qualitative patterns in the data are

consistent with Remark 1 and, therefore, senders for the most part select to disclose the most

favorable evidence available. This result predicts that, holding K constant, senders should

disclose increasingly higher signal realizations as N increases, since they can cherry-pick their

signals more effectively. Conversely, holding N constant, senders should disclose increasingly

lower signal realizations as K increases because equilibrium forces compel senders to disclose

more evidence, which requires them to be less selective.

There are several ways in which we can test these predictions. A particularly convenient

one, both analytically and for data visualization, is to map each message into a real number,

its implied grade point average (GPA). Just as in the case of school transcripts, we assign a

numerical value to each signal in a message and average them. In particular, we assign A → 4,

B → 3, C → 2, and D → 1. Consistent with equilibrium reasoning, we assign any missing

signal the value of a D signal.19

19For instance, when K = 3, message m = (A, B, C) has a GPA of 3, and message m = (A, B, o) has a GPA of
2.67. The results we present in this section are robust to other conventions; for example, coding a missing signal
as a 2.5 (i.e., the expected grade given prior belief) or as a 0 (i.e., a grade strictly lower than D). Additionally, our
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Table 4: Mean grade point average (MGPA) induced by senders’ messages.

N = K N = 10 N = 50

K = 1
Data 2.31 3.63 3.61

Predictions 2.57 3.83 4.00

K = 3
Data 2.27 3.24 3.54

Predictions 2.52 3.52 3.98

For reference, an “unselective” sender who discloses K signals at random would
generate an MGPA of 2.50 in all treatments.

Table 4 reports the mean GPA (MGPA) computed at the treatment level. As predicted, hold-

ing K constant, we observe sizable increases in MGPA going from treatments with N = K

to treatments with N > K (p-value < 0.01); conversely, holding N constant, the MGPA

decreases as K increases. As predicted, this effect is large and statistically significant when

N = 10 (p-value < 0.01) and small and not significant when N = 50. The same patterns hold

when we look at sender-level data, as opposed to treatment averages. Figure 2 reports the cu-

mulative distribution function (CDF) of sender-level MGPAs. We document a large first-order

stochastic dominance (FOSD) increase in the CDF of sender-level MGPAs when N increases

from N = K to N > K (p-value < 0.01).20 For both values of K, the differences between

N = 10 and N = 50 are small; the theory also predicts these differences to be relatively small

(see Figures 2c and 2d), because senders already have ample opportunity for selection when

N = 10. Additionally, the comparison between Figures 2a and 2b reveals, holding N constant,

the CDF of sender-level MGPAs decreases (in a FOSD sense) as K increases (p-value < 0.01

for N = 10 and p-value < 0.1 for N = 50).

These results corroborate the qualitative predictions of Remark 1 and are a manifestation of

the fact that senders predominantly engage in selective disclosure. Quantitatively, we find that,

across all treatments, 24% of senders play in a way that is exactly consistent with maximally

selective strategies in all of the last 15 rounds, while 56% of the senders do so in at least 80%

of these rounds. Nonetheless, there are meaningful quantitative differences between the pre-

dictions and the data. For all treatments, senders induce MGPAs that are lower than predicted.

results also hold if we do not use summary measures such as GPA. Figure C.5 (Online Appendix C.2) reports the
distribution of disclosed signals and how it changes in K and N.

20All the FOSD tests reported in the paper follow the procedure in Barrett and Donald (2003). For the imple-
mentation, we follow Lee and Whang (2024). Note however that this procedure does not account for the correla-
tion between subject-level and session-level data.
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(d) K = 3, Predictions
Figure 2: CDFs of senders’ message GPAs: data and predictions

This is true both at the treatment level (Table 4) and at the sender level (Figure 2). Addition-

ally, the distributions reveal that senders’ behavior is more heterogeneous than predicted.21 We

will address these quantitative deviations and further analyze senders’ heterogeneity in Section

4.1.3.
21Note that the predictions in the bottom panels of Figure 2 display some heterogeneity due to the randomness

of s̄, the vector of signals available to each sender. Given any finite sample, two senders playing the equilibrium
strategy may not induce the same MGPAs. However, there is clearly more heterogeneity in senders’ behavior than
what can be explained by such randomness.
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4.1.2 How Much Information Do Senders Transmit?

Next, we discuss how much information senders transmit. As discussed in Section 3, we define

senders’ informativeness, denoted by IB(K, N), as the correlation between the state and the

guess of an idealized Bayesian receiver who optimally responds to senders’ average behavior

in the treatment.

Table 5 reports the average IB(K, N) for each treatment. We find that, for all treatment

variations of K and N, the average senders’ informativeness moves in the directions predicted

by the theory. Next, we highlight the most important comparisons.22

First, Proposition 2(a) and Figure 1 predict that, holding N constant, increasing K should

increase senders’ informativeness. Quantitatively, this increase should be large for N = 10 and

small for N = 50. Accordingly, the data exhibit a large and significant increase for N = 10,

from 0.43 to 0.82 (p-value < 0.01), while only a statistically insignificant one for N = 50,

from 0.38 to 0.39.

Second, as predicted by Proposition 2(b), we find that when senders can disclose all the

evidence (i.e., when K = N) increasing N significantly increases senders’ informativeness,

from 0.46 to 0.73 (p-value < 0.01).

Third, Proposition 2(c) predicts that an increase in N should eventually decrease senders’

informativeness for both values of K. Accordingly, the average senders’ informativeness de-

creases from 0.73 to 0.39 for K = 3 and from 0.46 to 0.38 for K = 1. The former treatment

effect is significant at the 1% level. The latter effect is only weakly significant (p-value of the

one-sided test < 0.10).

Finally, the theory predicts that informativeness should decrease in N if K = 1 but display

a nonmonotonicity if K = 3. Accordingly, we find that increasing N from K to 10 increases

senders’ informativeness from 0.73 to 0.82 if K = 3, but decreases it from 0.46 to 0.43 if

K = 1. The former treatment effect is significant at the 5% level, although the p-value of this

test is sensitive to the exact specification. The latter effect is not significant.

To summarize, despite the richness of our predictions, there is no case in which the theory is

rejected, and in the majority of cases, the predicted changes are statistically significant. These

22The statistical tests reported in this subsection are performed by computing correlations at the sender’s level
and by clustering at the session level. The robustness of these results is confirmed by using an alternative boot-
strapping procedure: For each treatment, we generate 1, 000 random subsamples, compute the senders’ correla-
tions in each of them, and use standard t-tests to compare the bootstrapped samples of correlations.

23The minor discrepancies between the predictions in Table 5 and those in Figure 1 stem from the fact that the
former are calculated for the realized θ’s and s̄’s rather than in expectation. This ensures a better comparability
with the data.
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Table 5: Senders’ informativeness IB(K, N) and predicted values.23

N = K N = 10 N = 50

K = 1

Senders’
Informativeness 0.46 0.43 0.38

Predictions 0.44 0.38 0.06

K = 3

Senders’
Informativeness 0.73 0.82 0.39

Predictions 0.69 0.84 0.22

findings suggest that the theory effectively captures the key tensions in how selective disclosure

shapes the informativeness of senders’ strategies.

Nonetheless, there is a notable quantitative deviation: Senders often overcommunicate, i.e.,

their informativeness is higher than predicted, especially for large N. This contrasts with

prior results in the literature on disclosure—both from the laboratory and the field—that find

that senders undercommunicate. This preceding literature shows that senders often conceal

evidence and communicate less than predicted—a failure of the unraveling principle. The

key difference relative to our setting is that, due to the unraveling argument, informativeness

in these papers is predicted to be maximal. Any departure from equilibrium behavior would

lead to undercommunication. As such, these studies cannot uncover overcommunication. In

contrast, in our setting, informativeness is never predicted to be maximal (see discussion in

Section 2.1). This is a key feature of our design as it enables the rich comparative statistics

discussed above and allows the theoretical predictions to potentially fail in either directions—

overcommunication and undercommunication.24

4.1.3 Understanding Senders’ Heterogeneity and Overcommunication

In this subsection, we analyze the heterogeneity in senders’ behavior and relate it to the devia-

tions from the theory that we have identified so far.

There are challenges in studying senders’ heterogeneity, especially in a way that can be

easily visualized. First, the sender’s strategy space is large. Second, we only observe part

of the senders’ strategy, namely what message is sent given the realized signals s̄, which are

24de Clippel and Rozen (2024) also features partial information transmission, though their model differs from
ours in both structure and goals. While their focus is not on informativeness, their findings suggest instances of
overcommunication by senders.
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random.25 Third, some key features of behavior often vary across treatments; for instance, in

some treatments, concealment is important, while in others it is not. These challenges both

complicate the inference of the sender’s strategy from the observed data and the comparisons

across treatments.

To address these challenges, we introduce the GPA gap, which is the difference between the

GPA of the message sent by the sender and the GPA of the equilibrium message, given the real-

ized s̄. For each sender, we calculate the conditional average gap, which is a two-dimensional

vector that features the average gap conditional on each state (high or low). Then, using a k-

means algorithm, we cluster the senders’ conditional average gaps. This approach allows us to

partially overcome the challenges discussed above. First, the sender’s strategy is summarized

into a much lower dimensional space. Second, these measures are only partially affected by the

randomness of the available signals because the conditional average gap is computed relative

to a benchmark—the equilibrium GPA—that similarly depends on this randomness. Lastly, the

procedure can be applied consistently for all treatments.

We cluster senders’ strategies into three groups. We interpret the clusters as representing

different styles of play. For each cluster, we compute the average frequency with which each

signal is sent conditional on the state. These averages represent the typical strategy played in

this cluster. For each cluster, we also compute the average senders’ informativeness as well as

the corresponding senders’ average payoff. Overall, this provides a comprehensive overview

of senders’ behavior, including what strategies they play, how informative they are, and how

much money they make.

Figures 3 and 4 report the results of our clustering analysis for treatment (K1, N50) and

(K3, N50), respectively. The patterns emerging from these two treatments are broadly repre-

sentative of what we find in the other treatments (see Online Appendix C.2). Our emphasis

on large-N treatments is motivated by the fact that the deviations documented so far manifest

themselves more starkly for these treatments.

In both treatments, the majority of senders belong to Cluster 1. Senders in this cluster dis-

play behavior that is highly consistent with equilibrium: They overwhelmingly disclose the

best available signals in both states. These senders earn the highest payoff and induce an infor-

mativeness that is closest to equilibrium.

Cluster 2 in our clustering analysis reveals one type of nonequilibrium play that appears in

all treatments. Senders in this cluster—approximately 17% of the sender population—display

25We do not observe what message would have been disclosed had the sender obtained a different set of avail-
able signals. Eliciting the sender’s strategy using the strategy method is impractical in this setting.
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Figure 3: Sender’s clustering for treatment (K1, N50). Equilibrium
values shown as dashed bars.
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Figure 4: Sender’s clustering for treatment (K3, N50). Equilibrium
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behavior that we interpret as deception-averse: In the high state, they disclose the best avail-

able signal, as prescribed by the equilibrium. However, in the low state, they consistently fail

to do so and, in fact, disclose the worst signal most of the time. Deception-averse senders in-

duce the highest informativeness, as their behavior strongly correlates with the state. Thus,

these senders contribute to the overcommunication documented in the previous section. Fur-

thermore, they earn a payoff that is 22% to 27% lower than the amount earned by senders in

the equilibrium-like cluster. These qualitative patterns hold in the other treatments as well (see

Online Appendix C.2).

Deception aversion is related to lying aversion, but with a key distinction. In our setting,

senders cannot lie, as the evidence is verifiable. Yet, they can deceive through selection.26 Our

deception-averse senders appear reluctant to disclose evidence that might mislead receivers

into believing the state is high when it is not. One noteworthy aspect of these senders’ behavior

is that, when the state is low, they do not exclusively disclose D signals—despite this being

feasible and, arguably, the most effective way to help receivers guess the state. For instance, in

the treatments under consideration, senders in this cluster disclose D signals only 40% to 50%

of the time, on average. Although it is clear that the behavior of these senders leads to more

information transmission, and is thus less deceptive, the reason they do not always send the

worst possible message is less clear. Perhaps, they trade off their aversion to deception with

a lower payoff. Their behavior could stem from a reluctance to be “excessively” deceptive, a

counterpart in a disclosure setting of what Gneezy et al. (2018) find in a cheap talk setting.

The presence of deception-averse senders represents a key difference from previous experi-

ments on disclosure. In those experiments, evidence typically fully reveals the state, and equi-

librium predicts full disclosure, leaving no room for deception aversion to manifest empiri-

cally. This observation may help clarify an apparent puzzle in the literature: Experiments on

cheap talk often find overcommunication whereas those on disclosure often find undercom-

munication. In our experiment, deception-averse behavior (which increases informativeness)

counterbalances the more classic finding that some senders conceal evidence (which lowers in-

formativeness). In previous disclosure experiments, this balancing is impossible. It is instead

possible in cheap talk experiments, due to lying aversion. Our hybrid setting accommodates

both types of behavior, suggesting that when N is large, concealment practically disappears,

and selection effects dominate.27

26Sobel (2020) discusses the theoretical distinction between lying and deception in communication. Abeler
et al. (2019) conduct a metastudy of the existing experimental literature and document the prevalence of lying
aversion in cheap-talk settings.

27We consider Cluster #3 as a residual of the k-means clustering algorithm, capturing behavior that varies
across treatments. In some cases, like Figure 3, it reflects behavior between equilibrium and deception aversion.
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4.1.4 Summary and Interpretation of Senders’ Behavior

In summary, we find that the senders overwhelmingly engage in selective disclosure. Their

behavior is qualitatively consistent with the theoretical predictions of our model. This indicates

that the theory effectively captures the key tensions in how selective disclosure shapes senders’

communication. We also document two main departures from the theory. First, on average

senders overcommunicate, i.e., they convey more information than predicted. Second, our

clustering analysis reveals that a group of senders is deception-averse. They disclose the best

available signals in the high state but refrain from doing so in the low state. These departures

are connected. In particular, by sending different messages in different states, the deception-

averse senders communicate more information than predicted, leading to overcommunication

in the aggregate.

4.2 Receivers’ Behavior

4.2.1 How Do Receivers Respond to Selected Evidence?

We now discuss receivers’ behavior. We begin by testing a key prediction from Remark 1: For

any fixed message m, the receiver’s guess should decrease as N increases, because receivers

should understand that senders are more selective with larger N.

This prediction is strongly borne out in the data. Before diving into a structured analysis of

this prediction, we first provide a simple illustration. Consider a receiver observing message

m = A in a treatment with K = 1. This receiver should respond more skeptically if N = 50

than if N = 1. As predicted, the average receivers’ guess between these treatments shows a

similar qualitative pattern: It decreases from 0.82 when N = 1 to 0.64 when N = 50 (p-value

< 0.01).

To provide more systematic evidence of the receivers’ responses to changes in N, we esti-

mate the following regression model:

ai,m = β0 + β1GPAm + β2DN10 + β3DN50 + εi,m, (1)

where ai,m is the guess of receiver i to message m, GPAm is the induced GPA of the message,

and DN10 and DN50 are dummies that equal 1 if N = 10 or N = 50, respectively. We estimate

this model separately for K = 1 and K = 3.28 The dummy coefficients capture how much the

In others, like Figure 4, it is small and harder to interpret, possibly indicating confusion.
28We report the OLS (with random effects) estimates here for ease of exposition; however, the results are robust

22



Table 6: Regression results of receivers’ responses for each K

K = 1 K = 3

(1)
Receiver’s

Guess

(2)
Empirical

Optimal Guess

(3)
Receiver’s

Guess

(4)
Empirical

Optimal Guess

GPA 15.33∗∗∗ 19.46∗∗∗ 26.59∗∗∗ 32.94∗∗∗

(0.91) (0.96) (2.21) (2.54)

DN10 −18.67∗∗∗ −29.21∗∗∗ −24.72∗∗∗ −30.92∗∗∗

(2.69) (1.93) (2.95) (2.90)

DN50 −17.04∗∗∗ −25.84∗∗∗ −28.16∗∗∗ −43.13∗∗∗

(2.20) (1.44) (3.00) (3.27)

Constant 19.08∗∗∗ 2.91 −6.28 −25.93∗∗∗

(1.98) (2.47) (5.18) (5.80)

Obs 1, 545 1, 545 1, 560 1, 560
Subjects 103 104

(1) and (3) with subject random effects, (2) and (4) without.
Standard errors clustered at the session level.
*** p < 0.01, ** p < 0.05, * p < 0.10

receivers’ guess decreases compared to the benchmark cases of N = K. Remark 1 predicts

that these dummy coefficients should be negative. Note that we control for the GPA of a

message rather than the messages themselves. We do so because, for treatments with K = 3,

some messages are only rarely used and the frequency of such messages is different across

treatments. The GPA circumvents this issue.

Table 6 reports the results of these regressions (columns 1 and 3). For both values of K, the

dummy coefficients are negative and strongly significant, as predicted. That is, as N increases,

receivers become more skeptical of messages with the same GPA. To understand whether these

treatment effects are quantitatively in line with the predictions, Table 6 also reports the coeffi-

cients that would have obtained if receivers had best responded to the senders (columns 2 and

4). This calculation is performed by replacing the dependent variable in the regression model

of Equation (1) with the empirical optimal guess: This is the guess of an idealized receiver who

best responds to the senders’ observed strategies. We use it as the benchmark against which

to considering different regression models (i.e., Tobit) and specifications (e.g., replacing the GPA with the message
as a regressor). Online Appendix C.3 shows the nonparametric estimates of receivers’ guesses on message GPA
by treatment.
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Table 7: Regression results of receivers’ responses for N = 10 and N = 50

N = 10 N = 50

(1)
Receiver’s

Guess

(2)
Empirical

Optimal Guess

(3)
Receiver’s

Guess

(4)
Empirical

Optimal Guess

GPA 23.90∗∗∗ 31.73∗∗∗ 16.09∗∗∗ 19.75∗∗∗

(3.34) (3.70) (1.62) (0.75)

DK3 8.40∗ 17.93∗∗∗ 3.43 1.66∗

(4.77) (3.09) (2.55) (0.72)

Constant −30.71∗∗ −70.83∗∗∗ −0.702 −23.97∗∗∗

(13.08) (14.70) (5.22) (2.90)

Obs 1, 005 1, 005 1, 065 1, 065
Subjects 67 71

(1) and (3) with subject random effects, (2) and (4) without.
Standard errors clustered at the session level.
*** p < 0.01, ** p < 0.05, * p < 0.10

to evaluate the receivers’ actual behavior.29 Comparing the estimated coefficients of these re-

gressions (columns 2 and 4) with those discussed before (columns 1 and 3), we conclude that,

although receivers become more skeptical, they do not adjust their responses as much as is re-

quired to fully account for selection. We discuss this point further in the next subsection.

A complementary test consists of studying how receivers respond to messages with the same

GPA as increase K, holding N constant. To fix ideas, consider receiving a message with a GPA

of 4 in treatments (K1, N10) and (K3, N10). Intuitively, this message is more selected in the

former treatment than in the latter. Therefore, fixing N ∈ {10, 50}, receivers’ guesses should

increase in K controlling for messages with the same GPA. To test this prediction, we estimate

a regression model that is similar to that of Equation (1) with a dummy variable DK3 , which

equals 0 if K = 1 and 1 if K = 3. Table 7 shows that the treatment effects are predicted to be

large for N = 10 and small for N = 50 (see columns 2 and 4). The data are in line with these

predictions (see columns 1 and 3): For N = 10, the predicted treatment effect is positive and

significant at the 10% level. For N = 50, this effect is small and insignificant.

29Specifically, the empirical optimal guess given a message m is E(θ|m) = Pr(1|m), i.e. the fraction of times
message m was sent when θ = 1 by any sender. We compute this by using data at the treatment level. Our results
in this section are robust to computing the empirical optimal guess at the session level.
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Table 8: Receivers’ response gaps

(a) Average response gaps by treatment

K = 1 K = 3

N = K 6.63 5.24

N = 10 11.73 5.25

N = 50 10.04 12.09

(b) OLS on response gaps

K = 1 K = 3

Gap Gap

GPA −4.13∗∗∗ −6.33∗∗∗

(1.34) (1.20)

DN10 10.56∗∗∗ 6.18∗∗∗

(2.47) (2.15)

DN50 8.81∗∗∗ 14.92∗∗∗

(2.65) (2.17)

Constant 16.18∗∗∗ 19.57∗∗∗

(2.94) (2.84)

Obs 1, 545 1, 560
Subjects 103 104

With random effects at the subject level.
Standard errors clustered at the session level.
*** p < 0.01, ** p < 0.05, * p < 0.10

Overall, these results corroborate a key qualitative prediction of the theory: Receivers rec-

ognize the fact that the evidence they observe is differentially selected across the treatments.

Quantitatively, however, they do not fully account for this selection. The next subsection ex-

plores why.

4.2.2 The Failure to Fully Account for Selection

To better understand how receivers deviate from the theory, we compute the response gap,

which is the difference between a receiver’s guess and the empirical optimal guess. A positive

response gap indicates that the receiver has overestimated the state, while a negative gap indi-

cates underestimation.

Table 8a reports the average response gap by treatment. Two patterns stand out. First, re-

sponse gaps are significantly positive across all treatments (p-value < 0.01, except for (K3, N10),

whose p-value is 0.09). This finding aligns with previous experimental results that show re-

ceivers are often overly optimistic (e.g., Cai and Wang, 2006; Jin et al., 2021). Considering

the complexity of the receiver’s task, the magnitudes of these gaps appear small, although they
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Figure 5: CDF of receivers’ response gaps

conceal substantial heterogeneity. Second, response gaps increase with N, indicating greater

overoptimism with larger N. This may seem counterintuitive, as the receiver’s task arguably

becomes simpler as N grows: For instance, in treatment (K1, N50), receivers observe the same

message (m = A) about 75% of the time, and are provided with detailed feedback at the end of

each round. This should facilitate learning and, thus, reduce the response gap relative to treat-

ments such as (K1, N1), where, for example, m = A is observed only 25% of the time.

To investigate the statistical significance of this unpredicted treatment effect, we regress the

response gap on the same covariates used in Equation 1.30 Table 8b reports the estimated

coefficients. We find that, for both values of K, the increase in the response gap as we move

from N = K to N > K is significant (p-value < 0.01). The same patterns hold when we look

at receiver-level effects as opposed to average effects. Figure 5 reports the CDF of the receiver-

level response gaps, controlling for the message distribution. It shows that, for both values of

K, these CDFs increase in a FOSD sense as N increases from K to 50 (p-value < 0.05 for

K = 1 and p-value < 0.01 for K = 3). This indicates that, percentile by percentile, receivers

make more mistakes when N is large.

We interpret these results as follows. Receivers’ behavior shows some degree of selection

neglect: Receivers do not entirely account for the impact of selection, leading them to insuffi-

ciently discount favorable evidence in settings with large N. Perhaps surprisingly, this bias per-

30Controlling for GPA is important because an increase in N produces two effects: First, a message may take
on a different meaning as it becomes more selected. Second, the frequency with which a message is received may
change. The response gap averages mistakes across different messages, so if some messages cause more mistakes,
changes in their frequency can create a spurious effect on the response gap.
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sists despite ample learning opportunities for receivers in our treatments. Recall that our anal-

ysis focuses on the last 15 rounds of each session and that receivers are provided with detailed

feedback at the end of each round. Selection neglect has been extensively studied in decision-

making contexts (e.g., Esponda and Vespa, 2018; Enke, 2020; Araujo et al., 2021; Barron

et al., 2024). Our findings highlight its significance in a strategic setting in which selection

arises endogenously from the desire of the sender to manipulate the receiver’s behavior. A pri-

ori, it is not clear how selection neglect would transfer to a strategic setting. On the one hand,

strategic uncertainty could amplify the bias by complicating the receiver’s inference process.

On the other hand, it might mitigate the bias by making the selection pressures more apparent

to the receiver, given that they originate from a sender with a clearly conflicting objective.

4.2.3 How Much Information Do Receivers Absorb?

We conclude by discussing how the informativeness of communication between senders and

receivers changes across treatments. Recall that, in Section 4.1.2, we focused on senders’ in-

formativeness, IB(K, N), which is the correlation between the realized state and the empirical

optimal guess and which measures the informativeness of the senders’ strategies. In this sec-

tion, instead, we focus on overall informativeness, denoted by I(K, N). This is computed as

the correlation between the realized state and the actual receiver’s guess. Thus, overall infor-

mativeness provides us with a comprehensive measure that tracks the amount of information

that is transmitted by the sender and absorbed by the receiver. Our final task in this section is

to evaluate how the receivers’ mistakes documented so far affect the comparative statics pre-

dictions of the model.

Table 9 reports overall informativeness at the treatment level, along with the senders’ infor-

mativeness and the theoretical predictions (already reported in Table 5). Note that, by defini-

tion, I(K, N) ≤ IB(K, N). Indeed, overall informativeness cannot be higher than senders’ in-

formativeness as receivers’ mistakes add noise that can only decrease the correlation between

the state and the guess.

We emphasize three aspects of Table 9. First, for a fixed N, increasing K should increase

overall informativeness (Proposition 2(a)). The increase should be large for N = 10 and small

for N = 50. The data shows a large increase for N = 10 (p-value < 0.01) and a statistically

insignificant treatment effect (with a wrong sign) for N = 50.

Second, as predicted by Proposition 2(b), we find that when senders can disclose all the

evidence (i.e. when K = N) increasing N significantly increases overall informativeness from
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Table 9: Overall informativeness, senders’ informativeness, and theoretical predictions

N = K N = 10 N = 50

K = 1

Overall
Informativeness 0.31 0.26 0.23

Senders’
Informativeness 0.46 0.43 0.38

Theory 0.44 0.38 0.06

K = 3

Overall
Informativeness 0.59 0.62 0.15

Senders’
Informativeness 0.73 0.82 0.39

Theory 0.69 0.84 0.22

0.31 to 0.59 (p-value < 0.01).

Third, as predicted by Proposition 2(c), increasing N from K to 50 reduces informativeness

from 0.59 to 0.15 when K = 3 and from 0.31 to 0.23 when K = 1. Although the first

effect is significant at the 1% level, the latter is not significant. Finally, when K = 3, the

overall informativeness directionally increases from N = 3 to N = 10 (from 0.59 to 0.62)

but this increase is not significant. Therefore, in this case, despite senders transmitting more

information, receivers do not use it to their advantage.

To summarize, receivers’ mistakes do introduce noise into the data, making it harder to

detect the treatment effects predicted by the model’s rich comparative statics. Nonetheless,

despite these challenges, there is no case in which the theory is rejected, and in the majority of

instances, the predicted changes remain statistically significant.

5 Concluding Remarks

This paper presented an experimental analysis of selective disclosure in communication. Us-

ing an experimental design informed by a broad set of theoretical comparative statics, we sys-

tematically assessed the relative importance of selected versus concealed evidence. Our find-

ings largely support the key qualitative predictions of the theory, revealing that selection is a

significant friction in communication. Specifically, when the amount of available evidence is

large, senders rarely conceal evidence, and selection emerges as the dominant distortion, con-

sistent with the theoretical predictions. We also identified deviations from the theory: A form
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of deception aversion causes some senders to overcommunicate, while receivers tend to par-

tially neglect the selective nature of the disclosed evidence.

Deception aversion is reminiscent of lying aversion, a well-documented phenomenon in

cheap-talk experiments that improves information transmission. Nonetheless, making infor-

mation verifiable leads to even more transmission, even though the increase is less than pre-

dicted in theory (see, e.g., Fréchette et al., 2022). Hence, to this point, the available empiri-

cal evidence suggests that policy could improve communication by making information veri-

fiable and imposing disclosure mandates. Our results highlight that these policies may not be

sufficient. Indeed, we have argued that when selection is the main distortion in communica-

tion, disclosure mandates—the typical policy response to the concealment of evidence—are

ineffective. To address this issue, an effective policy must target the root of selection, which

stems from the disparity between the amount of available evidence (N) and the communica-

tion capacity of the environment (K). Although increasing the communication capacity is al-

ways beneficial, as illustrated by our experiment, this approach may be costly or impractical.

An alternative that may warrant further experimental investigation is the role of measures that

aggregate the available evidence, such as summary ratings or other sufficient statistics. If these

measures could be made verifiable and easily interpretable by receivers, they would ameliorate

the problems created by selection. For instance, the “Nutrition Facts” labels mandated by the

FDA summarize detailed nutritional data into key, easily interpretable statistics. Digital plat-

forms that rely on user-generated reviews often summarize a large set of past experiences into

key statistics, such as the average rating. It seems valuable to investigate whether summary

measures can be effective on their own, whether they would coexist with direct evidence dis-

closure, and how these different forms of evidence disclosure might interact.
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Appendix

A Equilibrium Refinement

This section introduces our equilibrium refinement and shows it leads to a unique equilibrium

outcome. First, let us provide a formal definition of PBE for our framework. To this end,

note that the receiver’s equilibrium strategy is pinned down by her belief on θ following any

message, which we denote by µ(θ|m) ∈ ∆(Θ). Given such belief, for any m ∈ M, the

receiver’s optimal action is unique and deterministic, i.e., it is equal to the expectation of θ

under µ(·|m):

ξ = arg max
a∈A

∑
θ

u(a, θ)µ(θ|m) = ∑
θ

θµ(θ|m) = E(θ|m).

Definition A.1. A Perfect Bayesian equilibrium (PBE) is a pair (σ∗ : Θ × SN → ∆(M);

µ∗ : M → ∆(Θ)) such that

1. For all θ ∈ Θ, s̄ ∈ SN, m ∈ supp (σ∗(·|θ, s̄)) and m′ ∈ M(s̄),

E(θ|m) = ∑
θ∈Θ

θµ∗(θ|m) ≥ ∑
θ∈Θ

θµ∗(θ|m′) = E(θ|m′);

2. If m ∈ supp (σ∗(·|θ, s̄)) for some θ ∈ Θ and s̄ ∈ SN

µ∗(θ|m) =
p(θ)∑s̄ σ∗(m|θ, s̄) f (s̄|θ)

∑θ′ p(θ′)∑s̄ σ∗(m|θ′, s̄) f (s̄|θ′) ∀θ ∈ Θ.

Otherwise, µ∗(·|m) ∈ ∆(Θ).

Any PBE (σ∗, µ∗) induces an equilibrium outcome x∗ : Θ × SN → A defined as

x∗(θ, s̄) := ∑
m∈M(s̄)

σ∗(m|θ, s̄) ∑
θ′∈Θ

θ′µ∗(θ′|m) ∀(θ, s̄) ∈ Θ × SN

Despite the presence of verifiable information, the game admits multiple equilibrium out-

comes (see Online Appendix E.2 for examples). We refine the set of PBEs by imposing a

monotonicity requirement on how the receiver responds to evidence. Formally, we extend the

order on S to the set S ∪ {o}, by assuming that min S and o are minimal elements in such a

set. The set of messages M is then endowed with the following partial order: m ≥ m′ if, for
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each i ∈ {1, . . . , K}, mi ≥ m′
i. Our refinement requires that, if m′ ≥ m, the receiver’s guess

following message m′ is higher than that following message m.

Definition A.2 (Evidence Monotone). A PBE (σ∗, µ∗) is evidence monotone if for all m, m′ ∈
M such that m′ > m, Eµ∗(θ | m′) > Eµ∗(θ | m).

Recall that a sender’s strategy is maximally selective if m ∈ supp (σS(·|θ, s̄)) is a maximal

element of M(s̄) for each (θ, s̄) ∈ Θ × SN. An maximally-selective equilibrium is a PBE in

which the sender’s strategy is maximally selective.

Proposition 3 (Uniqueness). All evidence-monotone PBEs induce the same equilibrium out-

come. This outcome is the same as the one induced by any maximally-selective equilibrium.

B Proofs

We begin by introducing some additional notation that will be useful in the proofs. Consider

the random vector (θ, s̄) ∈ Θ × SN, which is distributed according to the probability mass

function f (θ, s̄) := p(θ) f (s̄|θ), where f (s̄|θ) = ∏i f (si|θ). Denote the n-th order statistics

of s̄ as s̄(n) and consider the following random variables

y1(s̄) = s̄(N); y2(s̄) = s̄(N−1); . . . ; yN(s̄) = s̄(1).

For instance, y1(s̄) represents the highest realization in s̄. To ease the notation, in what follows

we will use yi in place of yi(s̄). Notice that yi ≥ yj for any i ≥ j. We write y to denote a

generic vector (y1, . . . , yn). The joint probability of (θ, y) ∈ Θ × SN is given by:

g(θ, y) = p(θ) f (y|θ)B(y)1{y1≥...≥yN},

where

• p(θ) f (y|θ) is the joint probability of (θ, y), ignoring that the signal realizations y =

(y1, . . . , yn) have been reordered;

• B(y) is the multinomial coefficient of vector y, which counts the number of distinct

permutations of such vector. For each s ∈ S, let qs(y) be the number of elements in

(y1, . . . , yn) that are equal to s. Note that,

B(y) =
n!

∏s qs(y)!
;
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• 1{y1≥...≥yN} is an indicator function that takes the value 1 if and only if the vector y is

weakly decreasing.

Lemma B.1. The random variables (θ, y1, . . . , yn) are affiliated. That is, their joint distribu-

tion g is such that

g(z ∨ z′)g(z ∧ z′) ≥ g(z)g(z′)

for any z, z′ ∈ Θ × SN.

The proof of this result is relegated to Online Appendix E.

Proof of Proposition 1. For any message m ∈ M, denote by ℓ(m) ∈ {0, . . . , N} the

number of disclosed signals in m, i.e. the components that are different from o. We construct an

equilibrium in which the sender plays a maximally selective strategy. In particular, we focus on

the maximally selective strategy in which the sender discloses the K most favorable signals, i.e.

for which ℓ(m) = K for every on-path message. It is straightforward to see that for any s̄ ∈ SN

there exists a m ∈ M(s̄) which is a maximal element and satisfies this definition. Additionally,

such strategy is pure and independent of θ, so it can be described as σ∗ : SN → M.

In our candidate equilibrium, the disclosed message only provides the receiver with infor-

mation about the possible realizations of s̄ ∈ SN. In particular, upon observing message m the

receiver assigns a positive probability to s̄ belonging to C(m), where

C(m) := {s̄ ∈ SN|∃ an injective ρ : {1, ..., ℓ(m)} → {1, ..., N} s.t.

if i ∈ ρ({1, . . . ℓ(m)}), s̄i = mρ−1(i); if i < ρ({1, . . . ℓ(m)}), s̄i ≤ h(m)},

and

h(m) =

{
mK ℓ(m) = K,

min S else.

By construction, when ℓ(m) = K, C(m) = σ∗−1
(m). Instead, when ℓ(m) < K, m is off the

equilibrium path. In this case C(m) only contains the most pessimistic s̄’s compatible with the

observed m. Given this, the receiver’s equilibrium belief µ∗ : M → ∆(Θ) is

µ∗(θ|m) =
p(θ)∑s̄∈C(m) f (s̄|θ)

∑θ′∈Θ p(θ′)∑s̄∈C(m) f (s̄|θ′) .
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This equilibrium uniquely pins down the receiver’s optimal action given m, namely

a∗(m) = ∑
θ

θµ∗(θ|m) = E(θ|s̄ ∈ C(m)).

We want to show that the pair (σ∗, µ∗) is a perfect Bayesian equilibrium (Definition A.1).

Condition (2) of such definition holds by construction. For Condition (1) to hold, we need to

show that, for all s̄, and m′ ∈ M(s̄),

a∗(σ∗(s̄)) = E(θ|C (σ∗(s̄))) ≥ E(θ|C(m′)) = a∗(m′). (2)

To do so, it is convenient to first translate this problem into the space of ordered vectors

Y = {s̄ ∈ SN|s̄1 ≥ . . . ≥ s̄N}. To distinguish between any s̄ ∈ SN and the ones whose

components are ordered in a weakly decreasing way, we indicate the vectors in Y as y. By

definition, y1 ≥ . . . ≥ yN. We show that restricting attention to Y is without loss of generality.

We begin by specializing the definition of C(m) to Y:

C̄(m) = {y ∈ Y|∀i ≤ ℓ(m) yi = mi and ∀i > ℓ(m) yi ≤ h(m)}.

Given any vector y ∈ Y, denote the set of its permutations by

B(y) = {s̄′ ∈ SN|∃ an injective ρ : {1, ..., N} → {1, ..., N} s.t. s̄′i = yρ(i)}

Note that, for every m, the collection {B(y)}y∈C̄(m) partitions C(m), that is, for every y, y′ ∈
C̄(m) s.t. y , y′, B(y) ∩ B(y′) = ∅ and C(m) =

⋃
y∈C̄(m) B(y). Next, we define the

restriction of distribution f onto the subset of ordered vectors Y. For any y ∈ Y, let

f̄ (y|θ) = ∑
y∈B(y)

f (y|θ) = |B(y)| f (y|θ) = B(y) f (y|θ)

where the second equality follows from the exchangeability of f and the third one from the

definition of B(y) as the multinomial coefficient of the vector y. More generally, we can define

the distribution f̄ (·|θ) as

f̄ (y|θ) = B(y) f (y|θ)1{y1≥...≥yN}

to account for the fact that the vectors in the support need to be ordered in a weakly decreasing
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way. Since

∑
s̄∈C(m)

f (s̄|θ) = ∑
s̄∈⋃

y∈C̄(y) B(y)
f (s̄|θ) = ∑

y∈C̄(m)
∑

s̄∈B(y)
f (s̄|θ) = ∑

y∈C̄(m)

f̄ (y|θ)

we have that
E(θ|C(m)) = ∑θ θ

p(θ)∑s̄∈C(m) f (s̄|θ)
∑θ′∈Θ p(θ′)∑s̄∈C(m) f (s̄|θ)

= ∑θ θ
p(θ)∑y∈C̄(m) f̄ (y|θ)

∑θ′∈Θ p(θ′)∑y∈C̄(m) f̄ (y|θ′)

= E(θ|C̄(m))

Under this redefinition of the problem, after observing a message m = (m1, . . . , mK), the

receiver will take action

E[θ|C̄(m)] = E[θ|y1 = m1, . . . , yK = mK, yK+1 ≤ mK, . . . , yN ≤ mK]

= ∑
θ∈Θ

θ
p(θ) f̄ (y1 = m1, . . . , yK = mK, yK+1 ≤ mK, . . . , yN ≤ mK|θ)

∑θ∈Θ p(θ) f̄ (y1 = m1, . . . , yK = mK, yK+1 ≤ mK, . . . , yN ≤ mK|θ)
.

At this point, we can argue that all the assumptions needed to apply Theorem 5 from Milgrom

and Weber (1982) are satisfied. First, we can apply Lemma B.1, to show that the random

variables (θ, y1, . . . , yN) are affiliated. Second, we can define the function H(θ, y1, . . . , yn) =

θ and easily see that such function is non-decreasing. We can then rewrite E[θ|C̄(m)] as

q(m1, . . . , mK) = E[θ|y1 = m1, . . . , yK = mK, s ≤ yK+1 ≤ mK, . . . , s ≤ yn ≤ mK]

where s = min S. Theorem 5 allows us to conclude that q(·) is nondecreasing in all of

its arguments. Under the assumption that the sender is playing a maximally selective strat-

egy, it must be true that σ∗(m) = m ≥ m′ for all m′ ∈ M(s̄). This directly implies that

q(m1, . . . , mK) ≥ q(m′
1, . . . , m′

K) and so that

a∗(σ∗(s̄)) = E(θ|C (σ∗(s̄))) ≥ E(θ|C(m′)) = a∗(m′).

Condition (1) of Definition A.1 is satisfied. This completes the proof that there exists an

equilibrium in which the sender plays a maximally selective strategy. □

Remark 2. All the maximally selective equilibria induce the same equilibrium outcome.

Proof. For any message m ∈ M, denote by ℓ(m) ∈ {0, . . . , K} the number of disclosed

signals in m that are different from o. Denote by x̄ : Θ × SN → A the outcome of the
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maximally selective equilibrium in Proposition 1 and by x∗ : Θ × SN → A the outcome of

any other maximally selective equilibrium.

First, we consider the case in which the sender’s maximally selective strategy is type-independent,

namely, the strategy σ∗ : SN → ∆(M) always discloses a maximal element in M(s̄) and

does not depend on θ. This implies that

supp (σ∗(·|s̄)) ∈ M̄(s̄) = {m ∈ M(s̄) | m ≥ m′ for all m′ ∈ M(s̄)}.

Given this definition, if there exists m ∈ M̄(s̄) such that mi > min S for all i ≤ K, such

element will be unique and supp (σ∗(·|s̄)) = M̄(s̄) = {m}. Instead, if there exists m ∈ M̄(s̄)

such that mi = min S for some given i ∈ {1, . . . , K}, there must also exist a m′ ∈ M̄(s̄)

such that m′
i = o. This implies that |M̄(s̄)| > 1. Instances with |M̄(s̄)| > 1 are the only

ones in which the sender’s maximally selective strategy may differ from the one considered in

Proposition 1 by assigning a positive probability to messages that contain some elements equal

to o (in place of min S). Note that, since the candidate equilibrium is independent of θ, for the

on-path messages, the receiver forms a posterior belief only conditioning on the information

available on s̄. Let us denote by M̃ the set of messages such that mi > min S for all i ≤ K.

Given the maximally selective strategy, each of these messages is sent with positive probability

in equilibrium, and for each m ∈ M̃ the receiver believes that s̄ ∈ C(m), where C(m) is

defined as in Proposition 1:

C(m) := {s̄ ∈ SN|∃ an injective ρ : {1, ..., K} → {1, ..., N} s.t.

if i ∈ ρ({1, . . . K}), s̄i = mρ−1(i); if i < ρ({1, . . . K}), s̄i ≤ mK)}.

This implies that, upon observing message m ∈ M̃, the receiver’s posterior belief is the same

as the one computed in Proposition 1. Hence, it must be that x̄(θ, s̄) = x∗(θ, s̄) for all θ ∈ Θ

and s̄ ∈ ⋃
m∈M̃ C(m).

We are now left to prove that the outcome is the same for all s̄ ∈ SN \ ⋃
m∈M̃ C(m). Let

us define M = M\M̃ as the set of messages that contains at least one mi ∈ {min S, o} for

some i ≤ K. For any on-path m ∈ M, the receiver believes that s̄ ∈ C̃(m), where

C̃(m) :={s̄ ∈ SN|∃ an injective ρ : {1, ..., ℓ(m)} → {1, ..., N} s.t. if i ∈ ρ({1, . . . K}),

s̄i = mρ−1(i); if i < ρ({1, . . . ℓ(m)}), s̄i = min S)} ∩ {s̄ ∈ SN : σ∗(m|s̄) > 0}

= C(m) ∩ {s̄ ∈ SN : σ∗(m|s̄) > 0}.
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Given the possibility of mixed strategies, we also need to define the probability that the receiver

assigns to any s̄ ∈ C̃(m):

Prob(s̄|C̃(m)) =
∑θ∈Θ f (s̄|θ)σ∗(m|s̄)

∑s̄′∈C̃(m) ∑θ∈Θ f (s̄′|θ)σ∗(m|s̄) .

It is straightforward that any s̄ ∈ C(m) would induce the same E(θ|s̄). Indeed, by definition,

all s̄ ∈ C(m) are one permutation of the other, but they contain the same number of s̄i for each

s̄i ∈ S. By the law of iterated expectations, it is necessarily true that E(θ|s̄) = E(θ|C(m)) =

E(θ|C̃(m)) for all s̄ ∈ C(m).

Note that, in the expression, C(m) is defined as in Proposition 1 for each m ∈ M. Consis-

tently with the maximally selective equilibrium, a component equal to o is interpreted by the

receiver as min S. This implies that, for any m and m′ such that ℓ(m) = K > ℓ(m′), mi = m′
i

for all i ≤ ℓ(m′) and mi = min S for all i > ℓ(m′), C(m) = C(m′). Given this argument, for

any m ∈ M with ℓ(m) < K we can replace C(m) with C(mK), where mK is such that mi =

mK
i for all i ≤ ℓ(m) and mK

i = min S for all i > ℓ(m). For each mK ∈ M, define M(mK)

as the set of messages m ∈ M such that C(mK) = C(m). Three facts are straightforward:

1. For any mK , mK′
, C(mK) ∩ C(mK′

) = ∅;

2. C(mK) =
⋃

m∈M(mK) C̃(m);

3.
⋃

m∈M̃,mK∈M C(m) = SN.

Hence, it must be that x̄(θ, s̄) = x∗(θ, s̄) for all θ ∈ Θ and s̄ ∈ ⋃
mK∈M C(mK), which implies

that x̄(θ, s̄) = x∗(θ, s̄) for all θ ∈ Θ and s̄ ∈ SN.

Now, let us focus on an equilibrium in which a maximally selective strategy that depends

on θ is played. That is, there exist at least a s̄ ∈ SN and two distinct types θ and θ′ such

that σ∗(·|θ, s̄) and σ∗(·|θ′, s̄) differ. Given that the strategy is maximally selective, it must

be that |M̄(s̄)| > 1. Indeed, if M(s̄) has a unique maximal element the strategies σ∗(·|θ, s̄)

and σ∗(·|θ′, s̄) would need to be pure and would necessarily coincide. This would make the

argument from the first part of the proof still valid to argue the equivalence in outcomes. Hence,

we just need to prove that x̄(θ, s̄) = x∗(θ, s̄) for all θ ∈ Θ and s̄ ∈ {s ∈ SN : |M̄(s)| > 1}.

Fix any s̃ ∈ {s ∈ SN : |M̄(s)| > 1} for which the conditions above are satisfied. For

the candidate strategy to be an equilibrium, it must be that for each m ∈ supp(σ∗(·|θ, s̃)) ∪
supp(σ∗(·|θ′, s̃)), E(θ|m) is the same, otherwise the sender would have a profitable deviation.

Letting ā = E(θ|m) denote such constant value, we need to show that ā = E(θ|C(m)), where
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m ∈ M̄(s̃), mi , o for all i ≤ K and C(m) is defined as in Proposition 1. As argued before,

C(m) contains all the permutations of s̃ and by the law of iterated expectations it must be that

for any C ⊂ C(m), E(θ|C) is constant and equal to E(θ|C(m)). In particular, E(θ|C(m)) =

E(θ|s̃). First, assume that ā < E(θ|s̃). Then, it must be that there exists m′ ∈ M̄(s̃) but m′ <

supp(σ∗(·|θ, s̃)) ∪ supp(σ∗(·|θ′, s̃)) such that E(θ|m′) > ā, which contradicts the optimality

of the sender’s strategy. Now assume that ā > E(θ|s̃). Then, there must exist m′ ∈ M̄(s̃)

that is used in equilibrium, again making the sender’s strategy suboptimal. Hence, it must be

that ā = E(θ|s̃). Since the choice of s̄ was arbitrary, it must be that x̄(θ, s̄) = x∗(θ, s̄) for all

θ ∈ Θ and s̄ ∈ {s ∈ SN : |M̄(s)| > 1}.

We can conclude that the set of outcomes induced by a maximally selective equilibrium is a

singleton, i.e. it only contains x∗. □

Remark 3. Any evidence monotone PBE is a maximally selective equilibrium.

Proof. Let (σ∗, µ∗) be an evidence-monotone PBE. We need to show that the sender’s strat-

egy needs to be maximally selective. Suppose by contradiction that the sender’s strategy is

not maximally selective. Then, there exist a (θ, s̄) ∈ Θ × SN and m ∈ M(s̄) such that

m ∈ supp (σ∗(·|θ, s̄)) but m is not a maximal element of M(s̄). Denote by m̄ ∈ M(s̄) a max-

imal element of the set. Since m is not maximal, it must be that m̄ > m. Due to evidence

monotonicity, it must be that Eµ∗(θ | m̄) > Eµ∗(θ | m). Since m̄ is a feasible message, this

violates sender’s optimality in the definition of PBE.

We are only left to argue that an evidence monotone PBE always exists, i.e. that there is a

maximally selective equilibrium in which for all m > m′, Eµ∗(θ | m) > Eµ∗(θ | m′). This

directly follows from the strict MLR property of f , that makes the function q(·) in Proposition

1 strictly increasing in all of its arguments. □

Proof of Proposition 3. It directly follows from Remark 2 and Remark 3.

Proof of Proposition 2. The proof is divided into three sections, each corresponding to a

different part of the statement.

1. Fix N and let (σ
′∗, µ

′∗) and (σ∗, µ∗) be the maximally selective equilibria for K′ and K,

respectively.

We first show that if K′ > K, then (σ
′∗, µ

′∗) is Blackwell more informative than (σ∗, µ∗).

Let P ′ = {σ
′∗−1

(m)}m∈σ
′∗(SN) and P = {σ

−1
(m)}m∈σ∗(SN).

Note that P ′ = {B(m)}m∈MK′ and P = {B(m)}m∈MK where
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B(m) = {s̄ ∈ SN|∃ an injective ρ : {1, ..., ℓ(m)} → {1, ..., N} s.t.

if i ∈ ρ({1, . . . ℓ(m)}), s̄i = mρ−1(i); if i < ρ({1, . . . ℓ(m)}), s̄i ≤ mℓ(m)}.

and MK = {m ∈ M : ℓ(m) = K}.

Fix any X′ ∈ P ′. We want to show there is X ∈ P such that X′ ⊆ X, with at least

one strict inequality. By definition, there is m′ ∈ MK′
such that X′ = B(m′). Define

m = (m′
1, . . . , m′

K) ∈ MK and X = B(m). Clearly, B(m′) ⊆ B(m) and, thus, X′ ⊆ X.

Moreover, if m′ , min SK′
, B(m′) ⊊ B(m).

By the Blackwell theorem, we can conclude that I(K′, N) > I(K, N). □

2. Fix K = N and K′ = N′ and let (σ
′∗, µ

′∗) and (σ∗, µ∗) be the maximally selective

equilibria for N′ and N, respectively. In both equilibria all the available signals are

disclosed. This implies that the beliefs µ
′∗ and µ∗ are degenerate distributions.

We want to show that if N′ > N, (σ
′∗, µ

′∗) is Blackwell more informative then (σ∗, µ∗).

Given the structure of the equilibrium, it is enough to show that f (·|θ) ∈ ∆(SN) is a

garbling of f ′(·|θ) ∈ ∆(SN′
). Let’s define garbling function g : SN′ → ∆(SN) such

that for any s̄ ∈ ∆(SN) and s̄′ ∈ ∆(SN′
)

g(s̄|s̄′) =

1 if s̄′ = (s̄, s) for s ∈ S

0 otherwise

Notice that for all s̄ ∈ SN

f (s̄|θ) = ∑
s̄′∈∆(SN′ )

g(s̄|s̄′) f ′(s̄′|θ) = ∑
s∈S

f ′ ((s̄, s)|θ)

At this point, we can apply the Blackwell’s theorem to conclude that I(K′, N′) >

I(K, N). □

3. Fix K and let (σ
′∗, µ

′∗) the maximally selective equilibrium of our game. As in the proof

of Proposition 3, we can induce an order on MK. Given the full support assumption, as

N → ∞, Prob
(
σ∗−1(m1) , S

)
→ 0. This implies that p(θ|m1) → p(θ) for all θ ∈ Θ

and so Em [Eθ [u(θ, σR(m))|m]] → Var[θ]. We can then conclude that I(K, N) → 0.

For the non-monotonicity, see the example in Appendix E.4. □
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Princeton University New York University Université Paris Dauphine
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C Additional Figures and Results

C.1 The Dynamics of Subjects Behavior

We present summary figures of the evolution of behavior, two for senders and two for receivers.

In all cases, the variable of interest is plotted for each treatment against blocks of five rounds.

On the sender side, Figure C.1 plots the evolution of the gap between the GPA of the equilib-

rium message and that of the actual message. In all but one treatment, the final gap is smaller

than the starting one: consistent with messages being more selected and less concealed. How-

ever, this evolution is substantial only in the treatments where selection is the main force.

Figure C.2 displays the fraction of messages that exactly correspond to the equilibrium pre-

diction. Across all treatments, the majority of messages are consistent with the equilibirum;

and by the end more than 75% of the messages in four of the six treatments correspond to equi-

librium. Again, the evolution is most noticeable in treatments where selection is the dominant

force. By the end, the treatment with the lowest rate of equilibrium messages is K3, N3. The

deviations in that treatment are driven by some senders concealing lower signals.

On the receiver side, the first figure shows the average belief for messages with a GPA of 4

(overall the most common GPA corresponding to 46% of the sample). The figure illustrates the

fact that in most treatments, receivers become more skeptical of messages that have the same

GPA. In some treatments the magnitude of these changes is large.

Figure C.4 shows that receivers are learning to better guess the probability of the red urn with

experience. The y-axis is the absolute difference between the probability of a red urn, given

the GPA of a message, and the guess. Accuracy tends to increase with experience, but overall

subjects seem more accurate in treatments with lower N.
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Figure C.1: MGPA of Messages Over Rounds
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Figure C.3: Average Belief Over Rounds
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Figure C.2: Equilibrium Messages Over Rounds
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Figure C.4: Accuracy Over Rounds
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C.2 Additional Results for Senders
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Figure C.5: Signal Distributions
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Figure C.6: Sender’s Clustering for the Treatment (K1, N1)
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Figure C.7: Sender’s Clustering for the Treatment (K1, N10)
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Figure C.8: Sender’s Clustering for the Treatment (K3, N3)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y 
of

 S
ig

na
ls

A B C D Empty

Percentage of Senders: 58%
Induced Informativeness: 0.87 
 Average Sender's Payoff: 60.42

Cluster 1: Equilibrium Like

0.0

0.2

0.4

0.6

0.8

1.0

A B C D Empty

Percentage of Senders: 9%

High State

Induced Informativeness: 0.98 
 Average Sender's Payoff: 32.38

Cluster 2: Deception Averse

0.0

0.2

0.4

0.6

0.8

1.0

A B C D Empty

Percentage of Senders: 33%
Induced Informativeness: 0.92 
 Average Sender's Payoff: 52.26

Cluster 3: Residual

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y 
of

 S
ig

na
ls

A B C D Empty 0.0

0.2

0.4

0.6

0.8

1.0

A B C D Empty

Low State

0.0

0.2

0.4

0.6

0.8

1.0

A B C D Empty

Figure C.9: Sender’s Clustering for the Treatment (K3, N10)
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C.3 Additional Results for Receivers

We study how, on average, the guesses made by the receivers respond to the message GPA. Our

theoretical predictions suggest that keeping fixed a value of the GPA, receivers should become

more skeptical as N increases, leading to lower guesses for any given GPA. Indeed, a higher

value of N allows for more selection on the part of the sender, making favorable messages

less informative about the type being high and unfavorable messages more informative about

the type being low. In Figures C.10 and C.11, we plot polynomial fits of the actual receivers’

guesses and of the guesses of an idealized Bayesian receiver as a function of the message GPA.
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Figure C.10: Receivers’ Average Guesses for K = 1
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Figure C.11: Receivers’ Average Guesses for K = 3

The first pattern we can observe is that receivers’ guesses are higher when the disclosed

information becomes more favorable. The second notable pattern that we can observe in the

figure emerges from the comparison between N = K and N > K: the receivers’ guesses

decrease in N for each message GPA and the decrease is particularly pronounced for higher
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values of the GPA. The only exception is the comparison between (K3, N10) and (K3, N3),

where the guesses are similar for high values of the GPA. This suggests that receivers account

for the fact that evidence is more selected when N is larger and they adjust their guesses

accordingly.

Comparing the guesses of an idealized Bayesian receiver with the behavior of receivers in

the data, we note that the qualitative patterns are similar. However, the receivers do not adjust

their guesses enough when moving from N = K to N > K. When N is large, subjects tend to

overguess for every value of the GPA (except for the N = K = 3 treatment in which receivers

tend to underguess). As discussed in Section 4.2.1, this behavior is in line with the bias of

selection neglect: when making inferences given the disclosed information receivers may fail

to account for the nature of the undisclosed information.

D Robustness to an Alternative Design

This section covers an additional experiment with an alternative design to the one presented

in the paper.2 After a brief description (section D.1), we replicate the key tables using this

new data set (section D.2). In the dimensions that are comparable to our main design, the

results are qualitatively consistent. The only exception is that we find that senders do not

overcommunicate, and we explain how some design features are likely to limit this possibility.

D.1 Experimental Design

The experiment featured a disclosure game very similar to the one considered in the paper. The

sender observes a randomly drawn number θ ∈ {1, 2, ...99}, where each number is equally

likely. She also observes N draws with replacement from a (virtual) urn containing 100 balls,

of which θ are white and the rest are black. Thus, θ is also the percentage probability of drawing

a white ball. For each ball she observes, she must decide whether to show it to the receiver,

and she can show a maximum of K balls in total. The receiver observes the shown balls, if any,

displayed in a random order, and makes a guess a about θ. The payoffs of the sender and the

receiver are 3 + 8a/100 and 10 − 8( θ−a
100 )

2, respectively.

The design consisted of three treatments that varied K and N, as summarized in Table D.1.

2This alternative design originally appeared in Ispano (2024). As mentioned in our acknowledgments, that
paper is now merged into the current one.
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N = K N = 6

K = 2 (K2, N2) (K2, N6)

K = 6 (K6, N6)

Table D.1: Treatments’ Denominations

2 6
0.6

1

0.71

0.87

0.69
K = 2

K = N

I(
K

,N
)

N

Figure D.12: Predicted Informativeness

Theoretical predictions on equilibrium informativeness are in Figure D.12.3 Each subject par-

ticipated in only one treatment and was randomly assigned the role of sender or receiver for

the entire experiment. She played fifteen rounds of the game with a randomly selected partic-

ipant in the opposite role in each round. At the end of the round, both subjects observed the

sender’s type θ, the receiver’s guess a, and the payoffs, but the receiver did not learn the color

of the undisclosed balls. More details about the design can be found in Ispano (2024).

The experiment was completely computerized and implemented with O-tree. All experi-

mental sessions were conducted at the LEEM experimental laboratory of Montpellier in 2023.

Each of the fifteen sessions, five per treatment, had an average of 18.5 participants and lasted

about one hour, including reading of instructions and payment. The average payment, includ-

ing a 5e show-up fee, was 15.74e, and earnings ranged from 10.29e to 18.84e. The experi-

ment was pre-registered on AsPredicted.org (#144222).

D.2 Results

In the analysis, we use the same specifications and statistical tests as in the main body of the

paper. Likewise, we focus on the second half of the rounds, i.e., from round 8 to 15.

D.2.1 Senders’ Behavior

What Evidence Do Senders Disclose?

Mirroring Table 3, Table D.2 reports the average number of disclosed signals as a fraction

of K in each treatment. In each treatment, the number of disclosed signals is significantly

3For the sake of precision, these predictions obtain when θ is drawn from a continuous uniform distribution,
in which case the equilibrium informativeness takes a simple closed form for any K and N.
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Table D.2: The average number of signals
disclosed as a fraction of K.

N = K N = 6

K = 2
Data 59.8% 80.8%

Predictions [48.8%, 100%] [81.6%, 100%]

K = 6
Data 54.1%

Predictions [53.1%, 100%]

Table D.3: Mean grade point average
(MGPA) induced by senders’ messages.

N = K N = 6

K = 2
Data 2.24 3.05

Predictions 2.46 3.45

K = 6
Data 2.22

Predictions 2.59

Table D.4: Overall Informativeness, Senders’ Informativeness, and Theoretical Predictions

N = K N = 6

K = 2

Overall
Informativeness 0.42 0.21

Senders’
Informativeness 0.64 0.57

Predictions 0.69 0.67

K = 6

Overall
Informativeness 0.48

Senders’
Informativeness 0.69

Predictions 0.85

lower than K (p-value < 0.01). Still, the number of disclosed signals increases with selection

opportunities, i.e., it is significantly higher in (K2, N6) than in (K2, N2) (p-value < 0.01).

Likewise, mirroring Table 4, Table D.3 reports the mean GPA of the senders’ messages in

each treatment. In computing the GPA, a disclosed white ball has a value of 4, while a disclosed

black ball and a concealed ball have a value of 1. The mean GPA increases significantly in

N, i.e., from (K2, N2) to (K2, N6) (p-value < 0.01), and decreases significantly in K, i.e.,

from (K2, N6) to (K6, N6) (p-value < 0.01). Also, the mean GPA is not significantly different

between the two treatments in which N = K. Finally, in all treatments, the mean GPA is

significantly lower than the theoretically predicted one (p-value < 0.01).

How Much Information Do Senders Transmit?

As can be seen in Table D.4, which mirrors Table 9, for all treatment variations of K and N, the

average senders’ informativeness moves in the directions predicted by the theory. The increase

in senders informativeness from (K2, N6) to (K6, N6) is significant (p-value < 0.05), and so
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is the increase from (K2, N2) to (K6, N6) (p-value < 0.05). The decrease from (K2, N2) to

(K2, N6) is not, which is however predicted to be small (and insignificant) even by the the-

ory. Finally, the senders’ informativeness is not significantly different from the theoretical in-

formativeness in treatments (K2, N2) and (K2, N6), while it is significantly lower in treatment

(K6, N6) (p-value < 0.05). That is, in this treatment, senders undercommunicate. These re-

sults contrast with those of the main experiment, where overcommunication is found for treat-

ments with large N.

Among design differences that may explain this discrepancy, e.g., equilibrium informative-

ness is lower to begin with for large N and a higher number of rounds may facilitate communi-

cation, we suspect that the richness of the message space relative to the type space also plays a

role. Indeed, as argued in the paper, deception aversion is responsible for overcommunication.

With only two types, a low type that wants to separate can easily do so by sending the lowest

signal, especially when N is large. Such a strategy has no clear counterpart in this setting.

Evidence of Deception Aversion. Table D.5 reports the results of a basic test of deception

aversion along the lines of the analysis of section 4.1.3. Namely, in each treatment, the GPA is

regressed on the sender’s type after controlling for the favorableness of signals as measured by

the maximum GPA that senders could generate, i.e., the theoretically predicted one. Contrary

to theoretical predictions and consistent with deception aversion, in treatments (K2, N2) and

(K2, N6) the GPA increases significantly with the type.

D.2.2 Receivers’ Behavior

How Do Receivers Respond to Selected Evidence?

Mirroring Table 6, Table D.6 examines how, fixing K and controlling for the GPA of the mes-

sage, the receivers’ guesses, and the empirical optimal ones, vary with N. Consistent with the

theory, for the same GPA, guesses decrease when N, although unlike the main experiment, the

effect is not significant. This difference may be due to the smaller variation of N in this exper-

iment. Nevertheless, the results again provide evidence of selection neglect, since, as for the

main experiment, a comparison of the two columns clarifies how the optimal guess should de-

crease in N.

Likewise, mirroring Table 7, Table D.7 examines how, fixing N and controlling for the GPA

of the message, the receivers’ guesses, and the empirical optimal ones, vary with K. Consistent

with the theory and the results from the main experiment, guesses increase with K. And again,
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Table D.5: GPA as a Function of Type Controlling for Theoretical GPA

(K2, N2) (K2, N6) (K6, N6)

(1) (2) (3)
GPA GPA GPA

Theoretical GPA 0.824∗∗∗ 0.732∗∗∗ 0.682∗∗∗

(0.0324) (0.104) (0.138)

Sender type 0.00258∗∗ 0.00735∗ 0.00405
(0.00112) (0.00379) (0.00472)

Constant 0.0864 0.143 0.235∗∗

(0.0554) (0.110) (0.102)
Observations 322 343 308
Subjects 46 49 44

Notes: * (p < 0.1), ** (p < 0.05), *** (p < 0.01). Standard er-
rors, in parentheses, are clustered at the session level.

a comparison of the two columns shows how receivers do not respond to this change as much

as they should.

The Failure to Fully Account for Selection

Mirroring Table 8a, Table D.8a reports the average response gap, i.e., the difference between

the receiver’s guess and the empirical optimal guess. As in the main experiment, the response

gap is positive in each treatment, although in this case it statistically different from zero only

in treatment (K2, N2) (p-value < 0.05). Concurrent explanations for this difference may be

that, in this experiment, receivers observe less favorable evidence overall (since treatments

with large N are not considered), and that the equilibrium reasoning required to make a correct

inference about undisclosed evidence is simpler (since signals are binary). Still, mirroring

Table 8b, Table D.8b documents how, fixing K and controlling for the GPA, the response

gap increases significantly with N as in the main experiment, providing further evidence of

selection neglect.

How Much Information Do Receivers Absorb?

Finally, in addition to the senders’ informativeness and the theoretical one, Table D.4 above

also reports the overall informativeness resulting from the interaction between senders and re-
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Table D.6: Regression Results of Re-
ceivers’ Responses for K = 2

K = 2

(1) (2)
Guess Optimal Guess

GPA 8.648∗∗∗ 13.46∗∗∗

(1.130) (0.568)

DN6 -2.389 -6.236∗∗∗

(1.937) (0.768)

Constant 30.32∗∗∗ 17.49∗∗∗

(2.544) (1.333)
Observations 665 665
Subjects 95

Notes: * (p < 0.1), ** (p < 0.05), *** (p < 0.01).
Standard errors, in parentheses, are clustered at the
session level. Regression (2) does not include random
effects.

Table D.7: Regression Results of Re-
ceivers’ Responses for N = 6

N = 6

(1) (2)
Guess Optimal Guess

GPA 10.51∗∗∗ 14.28∗∗∗

(1.934) (1.030)

DK6 9.404∗∗∗ 12.12∗∗∗

(2.294) (1.167)

Constant 22.26∗∗∗ 8.757∗∗

(5.931) (3.289)
Observations 651 651
Subjects 93

Notes: * (p < 0.1), ** (p < 0.05), *** (p < 0.01).
Standard errors, in parentheses, are clustered at the
session level. Regression (2) does not include random
effects.
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Table D.8: Receivers’ Response Gaps

(a) Average Response Gaps by Treatment

K = 2 K=6

N = K 2.05 1.99

N = 6 2.43

(b) OLS on Response Gaps

K = 2

Gap
GPA -4.828∗∗∗

(0.916)

DN6 3.861∗∗

(1.940)

Constant 12.86∗∗∗

(2.131)
Observations 665
Subjects 95

Notes: * (p < 0.1), ** (p <

0.05), *** (p < 0.01). Standard
errors, in parentheses, are clus-
tered at the session level.

ceivers. As in the main experiment, naturally, the overall informativeness is lower than the

senders’ informativeness. Moreover, the overall informativeness moves in the directions pre-

dicted by the theory. The increase in informativeness from (K2, N6) to (K6, N6) is significant

(p-value < 0.01), as is the increase from (K2, N2) to (K6, N6) (p-value < 0.05). Interestingly,

even the decrease from (K2, N2) to (K2, N6), which is predicted to be small by the theory, is

significant (p-value < 0.05), which is consistent with selection neglect by receivers.

E Supplementary Proofs and Equilibrium Examples

E.1 Proof of Lemma B.1

Proof of Lemma B.1. Denote by z = (θ, y1, . . . , yn) a generic realization of these random

variables. To show that the random variables (θ, y1, . . . , yn) are affiliated, we need to show

that, for any z, z′ ∈ Θ × SN,

g(z ∨ z′)g(z ∧ z′) ≥ g(z)g(z′),
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where z∨ z′ and z∧ z′ are the component-wise max and min of the two vectors (Theorem 24 in

Milgrom and Weber, 1982). Θ × Sn is a lattice, thus the operations ∨ and ∧ are well-defined.

Additionally, letting z = (θ, y) and z′ = (θ′, y′), if y and y′ are weakly decreasing, z ∨ z′ and

z ∧ z′ are also weakly decreasing.

Since the product of affiliated functions is affiliated (Theorem 1(ii) in Milgrom and Weber,

1982), it is enough to show that the functions p(θ) f (y|θ) and B(y)1{y1≥...≥yn} are affiliated.

For the former, fixing z = (θ, y) and z = (θ′, y′), we need to show that

p(θ ∨ θ′) f (y ∨ y′|θ ∨ θ′)p(θ ∧ θ′) f (y ∧ y′|θ ∧ θ′) ≥ p(θ) f (y|θ)p(θ′) f (y′|θ′).

Dividing by p(θ)p(θ′) and using the fact that f (y|θ) = ∏i f (yi|θ), the expression above

becomes

∏
i

f (yi ∨ y′i|θ ∨ θ′)∏
i

f (yi ∧ y′i|θ ∧ θ′) ≥ ∏
i

f (yi|θ)∏
i

f (y′i|θ′).

It suffices to show that, for all i ∈ {1 . . . , n},

f (yi ∨ y′i|θ ∨ θ′) f (yi ∧ y′i|θ ∧ θ′) ≥ f (yi|θ) f (y′i|θ′).

This holds thanks to a simple application of the MLRP.

For the latter, letting h(y) = B(y)1{y1≥...≥yn}, we need to show that for all ȳ, ȳ′ ∈ SN

h(ȳ ∨ ȳ′)h(ȳ ∧ ȳ′) ≥ h(ȳ)h(ȳ′). (3)

If at least one between y and y′ is not weakly decreasing, h(y)h(y′) = 0, and thus the affiliation

inequality of Equation 3 holds because h(y) ≥ 0 for any y. Therefore, assume both y and y′

are weakly decreasing. We need to show that

B(y∨ y′)B(y∧ y′) ≥ B(y)B(y′) =
n!

∏s qs(y ∨ y′)!
n!

∏s qs(y ∧ y′)!
≥ n!

∏s qs(y)!
n!

∏s qs(y′)!
=⇒

∏
s

qs(y)! ∏
s

qs(y′)! ≥ ∏
s

qs(y ∨ y′)! ∏
s

qs(y ∧ y′)! =⇒

∏
s

qs(y)! qs(y′)! ≥ ∏
s

qs(y ∨ y′)! qs(y ∧ y′)!
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It suffices to show that, for each s ∈ S,

qs(y)! qs(y′)! ≥ qs(y ∨ y′)! qs(y ∧ y′)!

To this end, we first prove two properties of qs.

Claim 1. If y and y′ are weakly decreasing and s ∈ S,

min{qs(y), qs(y′)} ≤ qs(y ∨ y′) ≤ max{qs(y), qs(y′)},

min{qs(y), qs(y′)} ≤ qs(y ∧ y′) ≤ max{qs(y), qs(y′)},

and

qs(y) + qs(y′) = qs(y ∨ y′) + qs(y ∧ y′).

Proof of Claim 1. Fix s ∈ S. Fix y and y′, both weakly decreasing. Let ι = min{i : yi = s},

the position of the first appearance of s in y. Let ῑ = max{i + 1 : yi = s}, the position

following the last appearance of s in y. If s never appears in y, let ι = ῑ = min{i : yi < s} if

there exists some i such that yi < s, and let ι = ῑ = n if yi > s for all i. By definition, ῑ ≥ ι.

Note that, since y is weakly decreasing, qs(y) = ῑ − ι. Define ῑ′ and ι′ for y′ accordingly. It is

straightforward to show that

qs(y ∨ y′) = max{ῑ, ῑ′} − max{ι, ι′}, qs(y ∧ y′) = min{ῑ, ῑ′} − min{ι, ι′}.

Given these alternative definitions, it becomes easy to show that the first two inequalities in

the Claim hold. In particular, they can be simplified to be

min{ῑ − ι, ῑ′ − ι′} ≤ max{ῑ, ῑ′} − max{ι, ι′} ≤ max{ῑ − ι, ῑ′ − ι′}

min{ῑ − ι, ῑ′ − ι′} ≤ min{ῑ, ῑ′} − min{ι, ι′} ≤ max{ῑ − ι, ῑ′ − ι′}.

To show that both statements are true, we need to consider four cases.

1. max{ῑ, ῑ′} = ῑ and max{ι, ι′} = ι =⇒ min{ῑ, ῑ′} = ῑ′ and min{ι, ι′} = ι′. Our two

inequalities become

min{ῑ − ι, ῑ′ − ι′} ≤ ῑ − ι ≤ max{ῑ − ι, ῑ′ − ι′}

min{ῑ − ι, ῑ′ − ι′} ≤ ῑ′ − ι′ ≤ max{ῑ − ι, ῑ′ − ι′}
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which are both trivially true;

2. max{ῑ, ῑ′} = ῑ′ and max{ι, ι′} = ι′ =⇒ min{ῑ, ῑ′} = ῑ and min{ι, ι′} = ι. The

argument resembles point 1 and both inequalities are trivially true;

3. max{ῑ, ῑ′} = ῑ and max{ι, ι′} = ι′ =⇒ min{ῑ, ῑ′} = ῑ′ and min{ι, ι′} = ι. Our two

inequalities become

min{ῑ − ι, ῑ′ − ι′} ≤ ῑ − ι′ ≤ max{ῑ − ι, ῑ′ − ι′}

min{ῑ − ι, ῑ′ − ι′} ≤ ῑ′ − ι ≤ max{ῑ − ι, ῑ′ − ι′}.

Notice that, under our assumptions, ῑ − ι ≥ ῑ′ − ι′ and we can further simplify the two

inequalities to

ῑ′ − ι′ ≤ ῑ − ι′ ≤ ῑ − ι

ῑ′ − ι′ ≤ ῑ′ − ι ≤ ῑ − ι

which are both true due the fact that ῑ ≥ ῑ′ and ι′ ≥ ι.

4. max{ῑ, ῑ′} = ῑ′ and max{ι, ι′} = ι =⇒ min{ῑ, ῑ′} = ῑ and min{ι, ι′} = ι′. The

argument resembles part 3 and both inequalities are satisfied.

The last equation in the Claim follows trivially from our definitions. Indeed

qs(y) + qs(y′) =(ῑ − ι) + (ῑ′ − ι′) = (ῑ + ῑ′)− (ι + ι′) =

(max{ῑ, ῑ′}+ min{ῑ, ῑ′})− (max{ι, ι′}+ min{ι, ι′}) =

(max{ῑ, ῑ′} − max{ι, ι′}) + (min{ῑ, ῑ′} − min{ι, ι′}) =

qs(y ∨ y′) + qs(y ∧ y′)

△

We now return to our target, which is to show qs(y)! qs(y′)! ≥ qs(y ∨ y′)! qs(y ∧ y′)!

Without loss of generality, assume a := qs(y) ≤ qs(y′) =: b and let a + b = Z. From Claim

1, we know that qs(y ∨ y′) + qs(y ∧ y′) = Z, a ≤ qs(y ∨ y′) ≤ b and a ≤ qs(y ∧ y′) ≤ b.

Given these results, we cab write the following chain of equations

qs(y ∨ y′)! qs(y ∧ y′)! ≤ max
c,d:

a≤c,d≤b
c+d=Z

c!d! = a!b! = qs(y)! qs(y′)!
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The first inequality follows from Claim 1. The second inequality follows from the fact that

the maximum of the product of two factorials is achieved when they take opposite extreme

values.

This completes the proof and allows us to conclude that the random variables (θ, y1, . . . , yn)

are affiliated. □

E.2 Equilibrium Multiplicity

In this section, we provide three examples of PBEs that are not maximally selective and hence

induce a different equilibrium outcome. Throughout, we suppose that Θ = {0, 1}, with each

state equally likely, and we fix N = 2 and K = 1. Also, we let µ(m) = µ(1|m) denote the

receiver’s belief that θ = 1, which also coincides with the optimal guess given such belief.

Example 1. (Nondisclosure equilibrium) Suppose S = {A, B}, f (A|1) ∈ (0, 1) and f (A|0) ∈
(0, f (A|1)). There exists an equilibrium in which the sender never discloses, i.e., always sends

m = {o} regardless of her type θ and the realization of the signals s̄.

s̄ m = σ∗(s̄, θ) a = µ∗(m)

A, A o 1/2

A, B or B, A o 1/2

B, B o 1/2.

This equilibrium is sustained, for instance, by the belief that µ∗(A) = µ∗(B) = 0, i.e., that

any disclosed signal is sent by the low type.

Example 2. (Uninformative disclosure equilibrium) Suppose S = {A, B}, f (A|1) ∈ (1/2, 1)

and f (A|0) = 1 − f (A|1). There exists an equilibrium in which the sender discloses if and

only if the two signals differ, in which case she selects which of the two realizations to disclose

with some type-independent randomization.

s̄ m = σ∗(s̄, θ) a = µ∗(m)

A, A o 1/2

A, B or B, A A with prob ϵ ∈ (0, 1), B with prob 1 − ϵ 1/2

B, B o 1/2.

In this equilibrium, all feasible messages are on the equilibrium path, but the receiver’s beliefs

do not move given the symmetry of the information structure and of the sender’s strategy.
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Example 3. (Non-monotone disclosure equilibrium) Suppose S = {A, B, C}, f (A|1) =

14/20, f (B|1) = 5/20, f (C|1) = 1/20, f (A|0) = 2/20, f (B|0) = 1/20, and f (C|0) =
17/20. Note that f satisfies the monotone likelihood ratio property since f (A|1)/ f (A|0) = 7,

f (B|1)/ f (B|0) = 5, and f (C|1)/ f (C|0) = 1/17. There exists an equilibrium, described

here below, in which the receiver’s action is non-monotone in the favorableness of the disclosed

signal in that µ∗(B) > µ∗(A) > µ∗(C).

s̄ m = σ∗(s̄, θ) a = µ∗(m)

A, A A 28/37

A, B or B, A B 175/214

A, C or C, A A 28/37

B, B B 175/214

B, C or C, B B 175/214

C, C C 1/290

The receiver’s beliefs upon any disclosed signal is pinned down by Bayes’ rule, i.e.,

µ∗(B) =
2 1

20
5
20 +

( 5
20

)2
+ 2 5

20
14
20(

2 1
20

5
20 +

( 5
20

)2
+ 2 5

20
14
20

)
+

(
2 1

20
17
20 +

(
1

20

)2
+ 2 1

20
2
20

) =
175
214
� 0.82

µ∗(A) =
2 1

20
14
20 +

(
14
20

)2(
2 1

20
14
20 +

(
14
20

)2
)
+

(
2 2

20
17
20 +

( 2
20

)2
) =

28
37
� 0.76

µ∗(C) =

(
1

20

)2

(
1
20

)2
+

(
17
20

)2 =
1

290
� 0.005,

while upon nondisclosure one can take any µ∗(o) ≤ µ∗(C). Intuitively, this equilibrium exists

because signal A is not much better news than signal B, while signal C is really bad news,

and given the sender’s strategy, the probability that the remaining signal is equal to C is higher

when A is observed than when B is observed.

E.3 Informativeness

In this Section, we establish the link between the ex ante receiver’s expected payoff and the

expected variance of the state θ given the disclosed message.
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Remark 4. Consider any PBE of our game. Fix the message m ∈ M, the receiver’s strategy

ξ : M → A, the sender’s strategy σ : Θ × SN → ∆(M) and the receiver’s posterior belief

µ(·|m) ∈ ∆(Θ). The correlation between the state θ and the receiver’s action induced by ξ(·)
is a monotonic transformation of the ex ante expected payoff of the receiver.

Proof. Consider any PBE of our game. Fix the message m ∈ M, the receiver’s strategy

ξ : M → A, the sender’s strategy σ : Θ × SN → ∆(M) and the receiver’s posterior belief

µ(·|m) ∈ ∆(Θ). We have that

Eθ [u (θ, ξ(m))] = − ∑
θ′∈Θ

µ(θ′|m)
(
E [θ|m]− θ′

)2

Given this, we can derive the ex-ante expected payoff of the receiver as:

Eθ,m [uR (θ, ξ(m))] = − ∑
m∈M

Prob(m) ∑
θ′∈Θ

µ(θ′|m)
(
E [θ|m]− θ′

)2

− ∑
m∈M

∑
θ′∈Θ

Prob(m, θ′)
(
E [θ|m]− θ′

)2 .

At this point notice that

Prob(m, θ) = Prob(m) · µ(θ|m).

Rearranging the expression we get

Eθ,m [uR (θ, ξ(m))] = − ∑
m∈M

Prob(m) ∑
θ′∈Θ

µ(θ|m)
(
E [θ|m]− θ′

)2

which implies

Eθ,m [uR (θ, ξ(m))] = − ∑
m∈M

Prob(m)Var [θ|m] = −Em [Var [θ|m]]

This argument directly links the ex-ante expected payoff of the receiver with the variance of

θ given the disclosed message. We can now show that −Em [Var[θ|m]] is monotonic transfor-

mation of Corr(θ, a), where a is the random variable generated by ξ(·) and

Corr(θ, a) =
E [θ · a]− E[θ]E[a]√

Var[θ]Var[a]
=

Em [Eθ [θ · ξ(m)|m]]− E[θ]Em[ξ(m)]√
Var[θ]Varm[ξ(m)]

Notice that:

• Em[ξ(m)] = E[θ];
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• Em [Eθ [θ · ξ(m)|m]] = Em
[
ξ(m)2] since Eθ[θ|m] = ξ(m);

• Varm[ξ(m)] = Em
[
ξ(m)2]− E[θ]2.

This implies that

Corr(θ, a) =
√

Varm[ξ(m)]√
Var[θ]

=

√
E[a2]− E[θ]2√

Var[θ]
.

Given that −Em[Var[θ|m]] = Em

[
E [θ|m]2

]
− Em

[
E
[
θ2|m

]]
= E[a2] − E[θ2], we can

derive the following relation:

−Em[Var[θ|m]] = Var[θ] · Corr(θ, a)2 − Var[θ].

□

This argument allows us to conclude that both −Em[Var[θ|m]] and Corr(θ, a) can be used

to study the level of information transmitted in equilibrium. Indeed, both measures provide the

same comparative statics with respect to the main parameters of our model.

E.4 Examples of the Non-Monotonicity of I(K, N)

As stated in Proposition 2, I(K, N) can be non-monotonic in N. In Section 2.2 we provide an

intuition for this result by introducing two effects, the imitation and the selection effect. The

following example illustrates more in detail both effects and how their interaction is the key

determinant in the shape of I(K, N).

We first relax the assumption that f has full support and study two extreme cases.

Let Θ = {0, 1}, p(1) = 1
2 , S = {A, B} and suppose that f (A|1) = γ > 1

2 and f (A|0) =
η < 1

2 . Finally, assume that K = 1. Given the parameters, the set of possible messages is M =

{A, B, o}. A maximally selective sender’s strategy discloses m = A if A is available and

otherwise discloses m ∈ {B, o}. This implies that, after observing m ∈ {B, o}, the receiver

will place probability one over a vector of signals s̄ with s̄i = B for all i ∈ {1, ..., N}. Let’s

denote this vector of signals by s̄B. Formally, after m ∈ {B, o}, µ∗(s̄B|m) = 1 and µ∗(s̄|m) =

0 for all s̄ , s̄B. On the other hand, after seeing m = A, the receiver places positive probability

on every s̄ ∈ S such that si = A for at least one i ∈ {1, ..., N}. Formally, after observing m =
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A, µ∗(s̄|m) = q(s̄|S \ {s̄B}), while µ∗(s̄B|m) = 0. Given this premise, it is easy to see that

p (1|m ∈ {B, o}) =
1
2(1 − γ)N

1
2(1 − γ)N + 1

2(1 − η)N
=

(1 − γ)N

(1 − γ)N + (1 − η)N

p (1|m = A}) =
1
2

(
1 − (1 − γ)N)

1
2 (1 − (1 − γ)N) + 1

2 (1 − (1 − η)N)
=

1 − (1 − γ)N

2 − (1 − γ)N − (1 − η)N

Since θ is binary, the optimal action of the receiver coincides with the posterior beliefs we

derived above. Her expected payoff given message m as

Eθ [u (θ, σR(m)) |m] = − p(1|m)p(0|m)

2
.

From this, we can get the ex-ante receiver’s expected payoff as

Em [Eθ [u (θ, σR(m)) |m]] = −
(1 − γ)N (

1 − (1 − γ)N)+ (1 − η)N (
1 − (1 − η)N)

2 ((1 − γ)N + (1 − η)N) (2 − (1 − γ)N − (1 − η)N)
=

−1
2

[
1 −

(
1 − (1 − γ)N)2

2 − (1 − γ)N − (1 − η)N − (1 − γ)2N

(1 − γ)N + (1 − η)N

]

According to our definition, the equilibrium informativeness is equal to

I(K, N) =
1
4
− Em [Eθ [u (θ, σR(m)) |m]]

Let us consider the extreme case of perfect good news, i.e. the case in which η = 0 and

γ < 1. Under these conditions, m = A perfectly reveals that θ = 1. This implies that

I(K, N) =
1
4
− (1 − γ)N

2 (1 + (1 − γ)N)

It is easy to verify that I(K, N) is strictly increasing in N. Hence, an increase in N al-

ways leads to more information transmitted in equilibrium. The intuition behind this result is

straightforward. Only θ = 1 can draw a signal equal to A and, when this happens, the value of

the state is fully revealed. The larger the number of available signals, the more likely it is that a

high-type sender can disclose m = A. In addition, as a consequence of the previous fact, when

N grows, a disclosure of m ∈ {B, o} makes the receiver more confident of θ = 0. These two

channels together are responsible of the fact that more available signals lead to more informa-

tion transmitted in equilibrium: We refer to this as separation effect.
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Let us now consider the other extreme case of perfect bad news, i.e. the case in which η > 0

and γ = 1. Under these conditions, m ∈ {B, o} perfectly reveals that θ = 0. Under this

parametrization, we have that

I(K, N) =
1
4
− 1 − (1 − η)N

2 (2 − (1 − η)N)

It is easy to show that when γ = 1, I(K, N) is decreasing in N. That is, the amount of

information transmitted in equilibrium decreases with the number of available signals. Again,

the intuition is simple. As N grows, the low-type sender is increasingly more likely to draw

at least one A-signal. Thus, disclosing the fully-revealing message m ∈ {B, o} becomes less

likely and, at the same time, m = A becomes weaker evidence of θ = 1. This decrease in

separation opportunities leads to less information transmitted in equilibrium: We refer to this

as imitation effect.

Finally, we consider the case in which f has full support, i.e. we have both η > 0 and γ < 1.

It is possible to show that for every pair (γ, η), I(K, N) increases moving from N = 1 to

N = 2. However, as N → ∞, I(K, N) converges to zero. This suggests that equilibrium

informativeness is non-monotonic in N. Intuitively, in this case, both the separation and im-

itation effects play a role in how the information transmitted in equilibrium changes with the

number of available signals. Which effect prevails determines the direction of the change in

I(K, N) after an increase in N.

Hence, the example discussed above allows us to illustrate that the effect of a change in

N on I(K, N) is the result of multiple forces given by the interaction of players’ strategic

incentives and available messages. The exact parametrization of the model pins down what

are the cases in which the separation effect dominates over the imitation effect. However, as

N becomes extremely large, the negative effect on information transmitted prevails, making

communication fully ineffective.

F Design

F.1 Graphical Interface

The figures in this section show the software interface of our main experiment, namely the one

described in the main body of the paper. Figures F.13 and F.14 show the sender’s screen at the

time of selecting her message. Figure F.15 shows the receiver’s screen at the time of making
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her guess. Figure F.16 shows the feedback screen.

Figure F.13: Sender’s Interface Before the Message Choice

Figure F.14: Sender’s Interface After the Message Choice

23



Figure F.15: Receiver’s Interface

Figure F.16: Feedback Interface

F.2 Sample Instructions

We reproduce instructions for one of our treatments, (K3, N10). These instructions were read

out aloud at the beginning of each session. Additionally, a copy of the instructions was handed

out to the subject and it was available to them at any point during the experiment.
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Tr: N10K3 

Welcome 

You are about to participate in a session on decision-making, and you will be paid for your 

participation with cash vouchers (privately) at the end of the session. What you earn 

depends partly on your decisions, partly on the decisions of others, and partly on chance. 

Please turn off phones and tablets now. Please close any program you may have open 

on the computer. The entire session will take place through computer terminals, and all 

interaction among you will take place through computers. Please do not talk or in any way 

try to communicate with other participants during the session. 

We will start with a brief instruction period. During the instruction period you will be given 
a description of the main features of the session and will be shown how to use the 

computer interface. If you have any questions during this period, raise your hand and your 

question will be answered privately. 

 

Instructions 

You will play for 30 matches in either of two roles: Sender or Receiver.  At the end of 

each round, you will be randomly paired with a new player. 

There are two urns: one Red and one Yellow. Each urn contains four types of balls, 

labeled A, B, C, and D. 

The Round 

At the beginning of each round, the Computer randomly selects one of the two urns (we 

will refer to the selected urn as secret Urn). The secret Urn has a 50% chance of being 

Red and a 50% chance of being Yellow. 

The Computer randomly draws 10 balls from the secret Urn. Depending on the color of 
the secret Urn, each ball has a chance of being drawn that is reported in the table below: 
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Urn A B C  D 

Red Urn 45% 25% 20% 10% 

Yellow Urn 10% 20% 25% 45% 

 

The 10 balls are drawn independently, meaning that the chance of drawing a ball is not 

affected by previous draws. 

1. Communication Stage—Sender is Active 

The sender observes the color of the secret Urn and sees the 10 balls that were drawn 

from it by the Computer. 

The Sender can disclose to the Receiver up to 3 of these 10 balls. We call this the 

Sender’s Message. 

2. Guessing Stage—Receiver is Active 

The Receiver observes the Sender’s Message but does not observe the color of the 

secret Urn.  

The Receiver must guess how likely it is that the secret Urn is Red. Specifically, the 

Receiver chooses a number from 0 to 100. We call this the Receiver’s Guess.  

For example, a Guess of 20 indicates that the Receiver believes there is a 20% chance 

that the secret Urn is Red. A Guess of 80, instead, indicates that the Receiver believes 

there is an 80% chance that the secret Urn is Red. More generally, a higher Guess 

indicates a greater chance that the secret Urn is Red. 

3. Feedback 

At the end of each round, both Sender and Receiver will see screens that summarize 

information from the Round. You will learn the color of the secret Urn; the balls that were 
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available to the Sender; the Message sent by the Sender; the Receiver's Guess; and your 

payoff. You will also see a history of what happened in previous rounds.  

 

How Payoffs Are Determined 

In each round, you earn points that will be converted into cash at the end of the 

experiment. 

Sender 

The number of points the Sender earns in a round depends only on the Receiver’s 

Guess and not on the color of the secret Urn. Specifically, the number of earned points 

is equal to the Receiver’s Guess. Therefore, the higher the Receiver’s Guess, the 

greater the number of points earned by the Sender.  

Receiver  

The number of points the Receiver earns depends on the Guess, on the color of the secret 

Urn, and on chance. Specifically, the number of earned points is determined as follows: 

The Computer randomly generates two numbers between 0 and 100, where 

each integer number is equally likely. Let’s call them the Computer’s Random 

Numbers.  

The Receiver earns 100 points if one of the following two things happens: 

- The secret Urn is Red and the Receiver’s Guess is greater than or equal 

to the smallest of the two Computer’s Random Numbers. 

- The secret Urn is Yellow and the Receiver’s Guess is smaller than or 

equal to the largest of the two Computer’s Random Numbers. 

The Receiver earns 0 points otherwise. 
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This compensation rule was designed so that the Receiver has the greatest chance 
of earning 100 points when they choose a Guess that equals their true belief that 
the secret Urn is Red. 
 

Final Payments 

At the end of the experiment, the total number of points you earned will be converted to 

dollars at the rate of: 

- $0.012 per point ($1.20 per 100 points) if you are the Sender. 

- $0.009 per point ($0.90 per 100 points) if you are the Receiver. 

In addition, you will receive a flat participation fee of $10. 
 

Practice Rounds: 
 

The experiment will begin with 2 practice rounds, to make you familiar with the interface 

and the tasks of both Sender and Receiver. All the choices you make in the Practice 

Rounds are unpaid and do not affect in any way the rest of the experiment. 
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Summary 

Before we start, let me remind you that: 

- You will play 30 Rounds in the same role: Sender or Receiver. You will be assigned 

your role at the end of the Practice Rounds. 

- The secret Urn has an equal chance of being Red or Yellow. 

- The Computer randomly draws 10 balls from the secret Urn. 

- The Sender can disclose to the Receiver up to 3 of these 10 balls. 

- The Receiver has to guess how likely it is that the secret Urn is Red. 

- The Receiver has the greatest chance of earning points when they choose a 
Guess that equals their true belief that the secret Urn is Red. 

- The higher the Receiver’s Guess, the greater the number of points earned by the 

Sender. 

- At the end of each Round, you are randomly paired with a new participant. 
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