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Abstract

More than half a century after the first experiment on the finitely repeated prisoner’s

dilemma, evidence on whether cooperation decreases with experience–as suggested by

backward induction–remains inconclusive. This paper provides a meta-analysis of prior

experimental research and reports the results of a new experiment to elucidate how coop-

eration varies with the environment in this canonical game. We describe forces that a↵ect

initial play (formation of cooperation) and unraveling (breakdown of cooperation). First,

contrary to the backward induction prediction, the parameters of the repeated game have

a significant e↵ect on initial cooperation. We identify how these parameters impact the

value of cooperation–as captured by the size of the basin of attraction of Always Defect–to

account for an important part of this e↵ect. Second, despite these initial di↵erences, the

evolution of behavior is consistent with the unraveling logic of backward induction for all

parameter combinations. Importantly, despite the seemingly contradictory results across

studies, this paper establishes a systematic pattern of behavior: subjects converge to use

threshold strategies that conditionally cooperate until a threshold round; and conditional

on establishing cooperation, the first defection round moves earlier with experience. Sim-

ulation results generated from a learning model estimated at the subject level provide

insights into the long-term dynamics and the forces that slow down the unraveling of

cooperation.
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1. Introduction

The prisoner’s dilemma (henceforth PD) is one of the most extensively studied games

in the social sciences. The reason is that the tension at the center of the game–the conflict

between what is socially e�cient and individually optimal–underlies many interesting

interactions, economic and otherwise.1 Played once, standard equilibrium notions predict

the Pareto-dominated, uncooperative outcome. Repeating the game does little to improve

the theoretical outlook whenever there is a commonly-known last round; the demands of

subgame perfection, where threats to punish uncooperative play must be credible to have

bite, result in the unraveling of cooperation via backward induction.

In this paper, we experimentally study the finitely repeated PD to understand the fac-

tors that a↵ect (1) the emergence of cooperative behavior; and (2) its possible unraveling

with experience. Our results indicate that cooperative behavior in this canonical environ-

ment is driven by two behavioral regularities: the role of the value of cooperation and the

emergence of threshold strategies. First, we identify a simple-to-compute statistic that

captures initial cooperativeness in this game. The statistic neatly summarizes how the

parameters of the environment a↵ect the key strategic tension in the game. Importantly,

the statistic highlights the role of strategic uncertainty in determining cooperative behav-

ior, and provides a simple measure to assess its impact in di↵erent environments. Second,

we find evidence for a previously unidentified regularity in learning about strategies. Our

results indicate that people learn to use strategies that allow for conditional cooperation

early on (creating dynamic game incentives), but switch to defection later (accounting

for unraveling). With experience, the defection region grows; and the structure of these

strategies provides a backdrop for how backward induction prevails in finitely repeated

games. However, it can take time for the full consequences of these strategies to emerge.

Despite more than half a century of research since the first experiment on the PD

(Flood 1952), it is di�cult to answer whether people learn to cooperate or defect in this

game. That is, data from di↵erent studies give a seemingly contradictory picture of the

evolution of play with experience.2 Despite the multitude of papers with data on the game,

several of which test alternative theories consistent with cooperative behavior, it is still

di�cult to draw clear conclusions on whether or not subjects in this canonical environment

are learning the underlying strategic force identified by the most basic equilibrium concept.

The source of these contradictory results could be the di↵erent parameters imple-

mented, in terms of payo↵s and horizon, other features of the design, or di↵erences in

the analysis. To address this, we collect all previous studies (meeting certain criteria)

1Examples include Cournot competition, the tragedy of the commons, team production with unob-
servable e↵ort, natural resource extraction, and public good provision, to name a few.

2For example, Selten & Stoecker (1986) interpret their results to be consistent with subjects learning
to do backward induction. They report the endgame e↵ect–the point after which subjects mutually
defect–to move earlier with experience. In contrast, Andreoni & Miller (1993) find that behavior moves
in the opposite direction; namely, they observe that the point of first defection increases with experience.
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and analyze the data within a unified framework.3 This analysis confirms the apparent

contradictory nature of prior results with respect to whether behavior moves in the di-

rection suggested by backward induction. We investigate the topic further with a new

experiment.

With respect to the forces that a↵ect initial play (formation of cooperation), and

unraveling (breakdown of cooperation) we document the following. For initial play, the

parameters of the repeated game have a significant impact on initial cooperation levels,

contrary to the prediction of subgame perfection. We confirm that increasing the horizon

increases cooperation, in line with a folk wisdom shared by many researchers on how

the horizon of a supergame a↵ects play. Namely, that as the horizon increases, coopera-

tion rates increase, and this is attributed, in a loose sense, to the di�culty of reasoning

backwards through more rounds.4

Our results indicate that the e↵ect of the horizon on cooperation is brought about

via a di↵erent channel. Increasing the horizon, while keeping the stage-game parameters

constant, increases the value of using a conditionally cooperative strategy relative to one

that starts out by defection. The trade-o↵ between cooperation and defection can be

captured by the size of the basin of attraction of always defect (AD), a simple statistic

imported from the literature on infinitely repeated PDs.5 In a regression analysis of

round-one choices in the meta-study, the value of cooperation has significant explanatory

power over and above the length of the horizon. The new experiment addresses this point

directly by comparing two treatments in which the horizon of the repeated game is varied,

but the value of cooperation is kept constant. Round-one cooperation rates remain similar

throughout our experiment between these two treatments.

One key new finding is that in our experiment, and in every prior experiment for which

we have data, subjects always take time to “learn” to use threshold strategies: strategies

that conditionally cooperate until a threshold round before switching to AD. This ob-

servation is a crucial part of understanding why prior experiments suggest contradictory

patterns with respect to backward induction. Once behavior incompatible with threshold

strategies has disappeared, we find consistent evidence in all treatments in our data set

3Although we re-analyze the original raw data, rather than collate the results of previous studies, we
will refer to this part of our analysis as the meta-study for simplicity.

4With folk wisdom, we refer to the common conception that cognitive limitations play an important
role in explaining divergence from equilibrium behavior in games involving unraveling arguments. In the
context of finitely repeated PD, Result 5 of Normann &Wallace (2012) is an example of prior experimental
evidence suggesting a positive correlation between cooperation rates and the horizon. In the context of
speculative asset market bubbles, Moinas & Pouget (2013) show that increasing the number of steps of
iterated reasoning needed to rule out the bubble increases the probability that a bubble will emerge.
We can also point to multiple papers using the level-k model to explain behavior in the centipede game,
which, as we discuss in Section 7 and Online Appendix A.1, is closely connected to the finitely repeated
PD (see Kawagoe & Takizawa (2012), Ho & Su (2013), Garcia-Pola et al. (2016)). In a recent paper,
Alaoui & Penta (2016) present a model of endogenous depth of reasoning that can account for how payo↵
structure a↵ects the degree to which unraveling is observed in this class of games.

5These observations can be found in Dal Bó & Fréchette (2011). See, also, Blonski et al. (2011), who
provide an axiomatic basis for the role of risk dominance in this context.
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that the round of first defection moves earlier with experience. However, early behavior

typically involves multiple switches between cooperation and defection, and, thus, learn-

ing to play threshold strategies results in a decrease in the rate of early defections. The

speed at which each of these two opposing forces happen–which varies with the payo↵s

and the horizon of the game–make the combined e↵ect look as though subjects either

behave in line with learning backward induction or not.

Although these forces imply unraveling of cooperation in the long run, we find that

this process can be very slow. Hence, to complement our results, we estimate a subject-

level learning model, and use the estimates to generate simulations of long-run behavior.

Our simulations suggest that cooperation rates may remain non-negligible even after

ample experience in the case of parameter constellations conducive to high levels of initial

cooperation.6 The estimation of this learning model also allows us to see the evolution of

the expected value of various strategies. This helps clarify why unraveling is slower in some

treatments than in others. In addition, simulations under counterfactual specifications

reveal that the stage-game parameters, rather than the variation in how subjects “learn”

across treatments, explain variations in the speed of unraveling.

2. Theoretical Considerations and Literature

The PD is a two-person game in which each player simultaneously chooses whether

to cooperate (C) or defect (D), as shown in the left panel of Figure 1(a). If both players

cooperate, they each get a reward payo↵ R that is larger than a punishment payo↵ P ,

which they would get if they were both to defect. A tension results between what is

individually rational and socially optimal when the temptation payo↵ T (defecting when

the other cooperates) is larger than the reward, and the sucker payo↵ S (cooperating

when the other defects) is smaller than the punishment.7

In this case, defecting is the dominant strategy in the stage-game and, by backward

induction, always-defect is the unique subgame-perfect equilibrium strategy of the finitely-

repeated game.

C D
C R,R S, T
D T, S P, P

(a) Payo↵ Matrix

C D
C 1, 1 � `, 1 + g
D 1 + g,�` 0, 0

(b) Normalized Matrix

Figure 1: The Prisoner’s Dilemma

6Even in these cases, simulation results show a slow but continued decline in cooperation.
7In addition, the payo↵ parameters can be restricted to R > S+T

2 > P . The first inequality ensures
that the asymmetric outcome is less e�cient than mutual cooperation. The second inequality, which has
been overlooked in the literature but recently emphasized by Friedman & Sinervo (2016), implies that
choosing to cooperate always improves e�ciency. These conditions create a sharp conflict between social
e�ciency and individual optimality.
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One of the earliest discussions of the PD included a small-scale experiment. Dresher

and Flood conducted that experiment in 1950 using two economists as subjects (reported

in Flood (1952)). That experiment, and others that followed, found positive levels of

cooperation despite the theoretical prediction to the contrary. An early paper to o↵er

an explanation for this phenomenon is due to the gang of four : Kreps et al. (1982)

showed that incomplete information about the type of the other player (either what

strategies they can play or their true payo↵s) can generate cooperation for a certain

number of periods in equilibrium. Alternatively, Radner (1986) proposed the concept of

epsilon-equilibria–in which agents are content to get close to the maximum equilibrium

payo↵s–and showed that cooperation can arise as part of an equilibrium strategy. Other

possibilities that were later explored include learning and limited forward reasoning (see,

for example, Mengel (2014a), Mantovani (2016), and the references therein). Moving

beyond the standard paradigm, social preferences for fairness, altruism or e�ciency can

also generate cooperation in this game. Although our meta-analysis and experiment are

not designed to distinguish between these theories, they provide a backdrop for how

cooperation can arise in this environment. Our purpose in this paper is not to test these

theories directly, but, rather, to take a step back and identify the main forces observed in

the data that a↵ect when and how cooperation emerges. We postpone discussion of our

results regarding these theories to the final section.

Much of the early experimental literature on the repeated PD came from psychology.

That literature is too vast to be covered here, but typical examples are Rapoport &

Chammah (1965), Lave (1965), and Morehous (1966). These papers are concerned mainly

with the e↵ect of the horizon, the payo↵s, and the strategies of the opponent. Some of the

methods (for payments, for instance), the specific focus (often horizons in the hundreds

of rounds), and the absence of repetition (supergames are usually played only once) limit

what is of interest to economists in these studies.

Studies on the finitely repeated PD also have a long history in economics.8 Online

Appendix A.1 provides an overview of the papers on the topic.9 More specifically, we

8Mengel (2014b) presents a meta-study that covers more papers and also supplements the existing
literature with new experiments. Di↵erent from our work, the paper focuses mainly on comparing results
from treatments where subjects change opponents after each play of the stage-game (stranger matching)
to results from treatments where subjects play a finitely repeated PD with the same opponent (partner
matching). For this reason, the meta-study includes more treatments in which the supergame is not
repeated, and the new experiments all involve the play of a single supergame. The paper finds that
“risk”–an index based on the sucker and punishment payo↵s–explains more of the variation in cooperation
under stranger matching, whereas “temptation”–an index based on the temptation and reward payo↵s–
explains more of the variation under partner matching. Thus, the paper is not intended to consider
whether behavior moves in the direction of backward induction or to study the impact of experience
more generally. Despite these di↵erences, the main conclusion of the paper emphasizing the importance
of the stage game parameters, and specifically highlighting how the “risk” and “temptation” parameters
can be interpreted to capture the strength of di↵erent forces that a↵ect cooperation in environments with
strategic uncertainty, is consistent with our results.

9Since our interest lies in the emergence and breakdown of cooperation and the role of experience, we
focus only on implementations that include an horizon for the repeated game of two or more rounds and
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cover all published papers (that we could find) with experiments that include a treatment

in which subjects play the finitely repeated PD and in which this is performed more than

once.10,11

Overall, these papers give us a fragmented picture of the factors that influence behavior

in the finitely repeated PD. Most papers are designed to study a specific feature of the

repeated game. However, if we try to understand the main forces that characterize the

evolution of behavior, it is di�cult to draw general conclusions. For instance, the evidence

is mixed with respect to whether or not subjects defect earlier with experience. There is

evidence consistent with unraveling (experience leading to increased levels of defection by

the end of a repeated game), as well as evidence pointing in the opposite direction (mean

round to first defection shifting to later rounds with experience).

3. The Meta-Study

The meta-study gathers data from five prior experiments on the finitely repeated PD.

Note that we do not rely simply on the results from these studies, but also use their

raw data.12 The analysis includes 340 subjects from 15 sessions with variation in the

stage-game parameters and the horizon of the supergame.

To facilitate the comparison of data from disparate experimental designs and to reduce

the number of parameters that need to be considered, the payo↵s of the stage-game are

normalized so that the reward payo↵ is one and the punishment payo↵ is zero. The

resulting stage-game is shown in the right panel of Figure 1(b), where g = (T � P )/(R�
P ) � 1 > 0 is the one-shot gain from defecting, compared to the cooperative outcome,

and ` = �(S � P )/(R� P ) > 0 is the one-shot loss from being defected on, compared to

the non-cooperative outcome.

have at least one re-matching of partners.
10Several recent papers (Mao et al. (2017); Schneider & Weber (2013); Kagel & McGee (2016); Cox

et al. (2015); Kamei & Putterman (2015)) study heterogeneity in cooperative behavior and the role of
reputation building in the finitely repeated PD. In Online Appendix A.1, we also include a discussion of
these papers.

11A related game that has been extensively studied in economic experiments is the linear voluntary
contributions mechanism (VCM), often referred to as the public goods game. A two player linear VCM
where each player has two actions corresponds to a special case of the PD. Using the notation defined in
the next section, a binary two players linear VCM is a PD with g = `. However, few experiments involve
repetitions of finitely repeated linear VCMs (with rematching between each supergame): Andreoni &
Petrie (2004, 2008), Muller et al. (2008), and Lugovskyy et al. (2017). Andreoni & Petrie (2004, 2008)
do not consider the e↵ect of experience on behavior. Hence, results on the evolution of play in that
game are few, but certainly Muller et al. (2008) and Lugovskyy et al. (2017) taken together suggest that
behavior changes with the stage game and with the amount of experience. To what extent these changes
are similar or di↵erent from the ones documented in the current study is not yet clear.

12Online Appendix A.2 provides more details on the included studies: henceforth, Andreoni & Miller
(1993) will be identified as AM1993, Cooper, DeJong, Fosythe & Ross (1996) as CDFR1996, Dal Bó
(2005) as DB2005, Bereby-Meyer & Roth (2006) as BMR2006, and Friedman & Oprea (2012) as FO2012.
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3.1 The Standard Perspective

Prior studies have focused mostly on cooperation rates, often with particular attention

to average cooperation, cooperation in the first round, cooperation in the final round, and

the round of first defection. Thus, we first revisit these data using a uniform methodology

while keeping the focus on these outcome variables–what we refer to as the standard

perspective. Table 1 reports these statistics for each treatment. They are sorted from

shortest to longest horizon and from largest to smallest gain from defection.
Table 1: Cooperation Rates and Mean Round to First Defection

Cooperation Rate (%) Mean Round to
Average Round 1 Last Round First Defection

Experiment H g ` 1 L 1 L 1 L 1 L

DB2005 2 1.17 0.83 14 13 18 14 10 11 1.21 1.20
within 2 0.83 1.17 25 9 32 13 17 5 1.42 1.14
subject 4 1.17 0.83 33 20 44 32 25 8 1.99 1.58

4 0.83 1.17 31 22 37 34 20 12 1.76 1.61
FO2012 8 4.00 4.00 33 33 43 67 23 3 2.27 3.53
within 8 2.00 4.00 38 34 43 63 30 3 2.77 3.67
subject 8 1.33 0.67 40 48 43 73 37 3 2.83 4.43

8 0.67 0.67 44 69 50 87 30 23 3.10 6.07
BMR2006 10 2.33 2.33 38 66 61 93 22 7 3.19 7.39
AM1993 10 1.67 1.33 17 47 36 86 14 0 1.50 5.50

CDFR1996 10 0.44 0.78 52 57 60 67 20 27 4.63 5.53

Notes: First defection is set to Horizon + 1 if there is no defection. 1: First Supergame; L: Last Supergame.

The first observation that stands out from Table 1 is that, with both inexperienced

and experienced subjects, the horizon length (H) and gain from defection (g) organize

some of the variation observed in cooperation rates. Cooperation rates increase with the

length of the horizon, and decrease with the gain.13 In this sense, there seems to be some

consistency across studies.14

Focusing on factors that interact with experience to a↵ect play, the horizon of the

repeated game appears to play an important role. Note that the average cooperation rate

always increases with experience when the horizon is long (H > 8) and always decreases

with experience when it is short (H < 8). Similarly, the mean round to first defection

statistic decreases with experience only if the horizon is very short (H  4).

13Statistical significance of the patterns reported here are documented in Online Appendix A.2. Tests
reported in the text are based on probits (for binary variables) or linear (for continuous variables) random
e↵ects (subject level) regressions clustered at the paper level for the meta and the session level for the
new experiment. Exceptions are cases in which tests are performed on specific supergames, where there
are no random e↵ects. Clustering is used as a precaution against paper or session specific factors that
could introduce un-modelled correlations (see Fréchette 2012, for a discussion of session-e↵ects). Two
alternative specifications are explored to gauge the robustness of the results in Appendix A.4. The
di↵erent specifications do not change the main findings.

14The results of AM1993 look slightly di↵erent from those of other studies with similar parameters,
but the di↵erences become less pronounced with experience. Furthermore, the AM1993 data consist of a
single session and, thus, it can be expected to be noisier.
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Other aspects of behavior that previous studies have focused on are round-one and last-

round cooperation rates. The horizon of the repeated game and the gain from defection

appear to play a role in how these measures evolve with experience. Figure 2 traces the

evolution of these cooperation rates over supergames separated by horizon and payo↵s.

In most treatments, last-round cooperation rates are close to zero or reach low levels

quickly.15 The evolution of round-one cooperation rates depends on the horizon. With

H = 2, cooperation rates in round one are close to zero, and when H = 4, they are

low and decreasing, though at a negligible rate when the gain from defection is small.

The round-one cooperation rate moves in the opposite direction as soon as the horizon

increases further. With both H = 8 and H = 10, round-one cooperation increases with

experience.
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Figure 2: Cooperation Rates: Round One (Circles) and Last Round (Triangles)

3.2 The Value of Cooperation and Round-One Choices

One consistent result to emerge from the standard perspective is that average co-

operation and round to first defection increase with the horizon. Both observations

are consistent with subjects having di�culty–or believing that their partners are having

di�culty–making more than a small number of steps of backward induction. However,

if the stage-game is kept constant, increasing the horizon also increases the di↵erence in

15The decline in cooperation in the last round could be due to multiple factors. If cooperation is
driven by reciprocity, the decline could be associated with more pessimistic expectations about others’
cooperativeness in the last round. Alternatively, if cooperation is strategic, the decline could be associated
with the absence of any future interaction with the same partner. Reuben & Seutens (2012) and Cabral
et al. (2014) use experimental designs to disentangle these two forces and find cooperation to be driven
mainly by strategic motives.
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the value of joint cooperation versus joint defection. Cooperation becomes more valuable

since more rounds generate the higher payo↵s from joint cooperation. On the other hand,

the risk associated with being defected on does not change: when using a conditionally

cooperative strategy, there is, at most, one round in which a player can su↵er the sucker

payo↵, irrespective of the length of the horizon. Hence, the value increases but the risk

does not.

Experiments on the infinitely repeated PD suggest that subjects react to changes in

the stage-game payo↵s and the discount factor according to how they a↵ect the value

of cooperation. However, it is not the case that the value of cooperation, as captured

by cooperation being subgame perfect, predicts on its own whether or not cooperation

emerges. The decision to cooperate seems to be better predicted by the size of the basin

of attraction of always defecting–henceforth sizeBAD–against the grim trigger strategy

(Dal Bó & Fréchette (2011)).16 Hence, the strategic tension is simplified by focusing

on only two extreme strategies: grim trigger and AD. Assuming that these are the only

strategies considered, sizeBAD is the probability that a player must assign to the other

player playing grim so that he is indi↵erent between playing grim and AD.

This measure can be adapted for the finitely repeated PD and used to capture the

value-risk trade-o↵ of cooperation. In this case, it can be calculated directly as:17

sizeBAD =
`

(H � 1) + `� g
.

Values close to one suggest that the environment is not conducive to supporting (non-

equilibrium) cooperation since a very high belief in one’s partner being conditionally

cooperative is required. The opposite is true if the value is close to zero. As can be seen,

sizeBAD is increasing in g and `, but decreasing in H.

Table 2 reports the results of a correlated random e↵ects probit investigating the

correlation between round-one choices and design parameters such as the sizeBAD, stage-

game payo↵s, and the horizon.18 The first specification controls for the normalized stage-

game parameters, g and `, and H.19 As can be seen, both g and H have a significant e↵ect

16The grim trigger strategy first cooperates and cooperates as long as both players have always coop-
erated; and defects otherwise.

17In the finitely repeated PD, AD (Grim) results in a payo↵ of 0 (�`) against a player following AD or a
payo↵ of 1+ g (H) against a player following Grim. sizeBAD corresponds to the probability, p, assigned
to the other player playing Grim that equalizes the expected payo↵ associated with either strategy, given
by pH � (1� p)` = p(1+ g). Unlike in infinitely repeated games, this calculation is not the best-response
to such a population, since adapting the grim strategy to defect in the last round would always achieve
a higher payo↵.

18Note that although there is variation in sizeBAD, it is highly correlated with the horizon in these
treatments (see Online Appendix A.2).

19In addition, there are four regressors that interact the supergame with dummies for the horizon and
a regressor for the choice in round one of the opponent in the preceding supergame; and the mean of the
random e↵ects is allowed to vary with a subject’s choice in round one of supergame one. We report this
specification, as it makes the e↵ect of the regressors of interest easy to read. However, a more complete
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Table 2: Marginal E↵ects of Correlated Random E↵ects Probit Regression of the Proba-
bility of Cooperating in Round One

(1) (2)

g �0.04⇤⇤⇤ (0.009) �0.03⇤⇤⇤ (0.006)
` �0.02⇤⇤⇤ (0.005) 0.00 (0.005)
Horizon 0.03⇤⇤⇤ (0.004) 0.01 (0.005)
sizeBAD �0.24⇤⇤⇤ (0.025)

Observations 5398 5398

Notes: Standard errors clustered (at the study level) in parentheses. ⇤⇤⇤1%, ⇤⇤5%, ⇤10% significance.
Additional controls include experience variables (supergame interacted with Horizon dummies) and choice history variables
(whether the player cooperated in the first supergame and whether the player they were matched with cooperated in round
one of the last supergame).
Complete results reported in Online Appendix A.2.

on round-one choices, and in the predicted direction: when there is more to be gained

from defecting if the other cooperates and when the horizon is short, it is less likely that

a subject will make a cooperative round-one choice. The second specification includes

the sizeBAD statistic. The new variable–which is a non-linear combination of g, `, and

H–has a significant negative impact on cooperation, as would be expected if the value

of cooperation considerations outlined above were important. Furthermore, the e↵ect of

the design parameters seems to be accounted for, in large part, by the sizeBAD variable,

with ` and g having a smaller magnitude.20

In summary, by combining data sets from prior studies, we are able to investigate the

impact of stage-game and horizon parameters on cooperation, as well as the interaction

of these with experience. However, a clear understanding of behavior is still not possible

using the meta-analysis alone. First, since the majority of experiments do not vary pa-

rameters within their designs, much of the variation comes from comparing across studies,

where many other implementation details vary. Second, the payo↵ parameters are, for

the most part, constrained to a small region, resulting in a high correlation between the

size of the basin of attraction of AD and the length of the supergame. Finally, very few

of the studies give substantial experience to subjects.

4. The Experiment

To address the issues identified in the meta-study, we designed and implemented an

experiment that separates the horizon from other confounding factors, systematically

varying the underlying parameters within a unified implementation. In addition, the new

specification would interact supergames with dummies, not only for each H, but also for all g, `, and
H. Those results are presented in Online Appendix A.2, but interpreting the e↵ect of a change in the
regressors of interest is complicated by the complex interactions with supergames.

20Another way to asses to what extent sizeBAD captures the relevant variation is to compare a measure
of fit between specification (1), which does not include sizeBAD, and an alternative specification that
does include sizeBAD, but excludes g, `, and Horizon. To give a sense of this, we estimate these two
specifications using random e↵ects regressions and report the R2. It is 0.34 without sizeBAD and 0.35
with sizeBAD but without g, `, and Horizon.
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sessions include many more repetitions of the supergame than are commonly found in

prior studies. The experiment is a between-subjects design with two sets of stage-game

payo↵s and two horizons for the repeated game: a 2⇥ 2 factorial design.

The first treatment variables are the stage-game payo↵s. In the experiment, partic-

ipants play one of two possible stage-games that di↵er in their temptation and sucker

payo↵s, as shown in Figure 3.21 The payo↵s when both players cooperate or both play-

ers defect are the same in both stage-games. As a consequence, the e�ciency gain from

cooperating is the same in both sets of parameters: 31%.

C D
C 51, 51 5, 87
D 87, 5 39, 39

(a) Di�cult PD

C D
C 51, 51 22, 63
D 63, 22 39, 39

(b) Easy PD

Figure 3: Stage-Games in the Experiment

The first stage-game is referred to as the di�cult PD, since the temptation payo↵ is

relatively high and the sucker payo↵ low, while the second stage-game is referred to as

the easy PD, for the opposite reason. In terms of the normalized payo↵s described in

Section 3, the (g, `) combination is (2.5, 2.83) for the di�cult PD and (1, 1.42) for the

easy PD. As shown in Online Appendix A.2, the easy parameter combination is close to

the normalized parameter combinations of a cluster of prior experiments from the meta-

analysis. The di�cult parameter combination has larger values of both g and ` than has

been typically implemented.

The second treatment variable is the horizon of the repeated game. To systematically

vary the number of steps of reasoning required for the subgame perfect Nash equilibrium

prediction, we implement short-horizon and long-horizon repeated games for each stage-

game. In the shorter horizon, the stage-game is repeated four times and in the longer

horizon, eigth times. Combining the two treatment variables gives the four treatments:

D4, D8, E4 and E8, where D/E refer to the stage-game, and 4/8 to the horizon.22

Following the intuition that cooperation is less likely in the di�cult stage-game, and

that the unraveling of cooperation is less likely with a longer horizon, cooperation is

expected to be higher as one moves to an easier stage-game and/or to a longer horizon.

However, the comparison between D8 and E4 is crucial, as it mixes the di�cult stage-

game parameters with the longer horizon and vice-versa. Indeed, the parameters have

been designed such that this mix gives precisely the same sizeBAD in both treatments.

Hence, if a longer horizon increases cooperation beyond its impact through the changes

21Payo↵s are in experimental currency units (ECU) converted to Dollars at the end of the experiment.
22The parameters were selected such that, based on the meta-study, we could expect that in the short

run, the aggregate statistics would move in the direction of backward induction, at least for D4, and in
the opposite direction, at least for E8. Other considerations were that the two values of H did not result
in sessions that would be dramatically di↵erent in terms of time spent in the laboratory.
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in the value of cooperation captured by sizeBAD–possibly because there are more steps

of iterated reasoning to be performed–treatment D8 should generate more round-one

cooperation than treatment E4.23

4.1 Procedures

The experiments were conducted at NYU’s Center for Experimental Social Science

using undergraduate students from all majors, recruited via e-mail.24 The procedures for

each session were as follows: after the instruction period, subjects were randomly matched

into pairs for the length of a repeated game (supergame). In each round of a supergame,

subjects played the same stage-game. The length of a supergame was finite and given

in the instructions so that it was known to all subjects. After each round, subjects had

access to their complete history of play up to that point in the session. Pairs were then

randomly rematched between supergames.

A session consisted of 20 or 30 supergames and lasted, on average, an hour and a

half.25 At the end of a session, participants were paid according to the total amount of

ECUs they earned during the session. Subjects earned between $12.29 and $34.70. Three

sessions were conducted for each treatment.26 Throughout, a subject experienced just

one set of treatment parameters: the stage-game payo↵s and the supergame horizon.

4.2 The Standard Perspective in the Experiment

Table 3 provides a summary of the aggregate cooperation rates across treatments. For

each treatment, the data are split into two subsamples: supergames 1-15 and supergames

16-30. Four measures of cooperation are listed: the cooperation rate over all rounds, in

the first round and in the last round, as well as the mean round to first defection. The

first observation is that our treatments generate many of the key features observed across

the di↵erent studies of the meta-analysis. This can be seen most clearly with respect

to first-round cooperation and mean round to first defection. First-round cooperation

in the long-horizon treatments is significantly higher in later than in earlier supergames.

Although none of the di↵erences are significant, the mean round to first defection shows

the same pattern as initial cooperation.

23Other statistics have also been found to correlate with cooperation rates in finitely repeated PDs,
as in Mengel (2014b). Murnighan & Roth (1983) also discuss ten indexes that can be applied to these
games. One key di↵erence between these and sizeBAD is that they depend only on the payo↵s of the
stage-game. Hence, their predictions for our E4 and E8 treatments, as well as for D4 and D8, are the
same.

24Instructions were read aloud. Subjects interacted solely through computer terminals. Instructions
are provided in Online Appendix A.6. The computer interface was implemented using zTree (Fischbacher
(2007)).

25The first session for each treatment consisted of 20 supergames. After running these, it was deter-
mined that the long-horizon sessions were conducted quickly enough to increase the number of supergames
for all treatments. Consequently, the second and third sessions had 30 supergames. The exchange rate
was also adjusted: 0.0045 $/ECU in the first session and 0.003 $/ECU in the second and third sessions.

26More details about each session are provided in Online Appendix A.3.
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Table 3: Cooperation Rates: Early Supergames (1–15) vs Late Supergames (16–30)

All rounds Round 1 Last Round First defect
Treatment 1–15 16–30 1–15 16–30 1–15 16–30 1–15 16–30

D4 15.4 >⇤⇤ 9.0 29.1 > 19.5 4.1 >⇤⇤ 3.2 1.5 > 1.3
D8 34.6 > 33.2 49.3 <⇤⇤⇤ 57.1 7.9 >⇤⇤⇤ 4.0 2.8 < 3.1
E4 28.0 >⇤⇤⇤ 21.2 49.0 > 45.2 10.4 >⇤⇤⇤ 3.8 1.9 >⇤⇤ 1.7
E8 60.1 >⇤⇤⇤ 55.2 79.7 <⇤⇤⇤ 88.2 9.0 >⇤⇤⇤ 3.0 5.3 ⇠ 5.3

All 37.8 >⇤⇤⇤ 33.5 51.1 < 51.6 8.0 >⇤⇤⇤ 3.6 2.8 > 2.7

Notes: Significance reported using subject random e↵ects and clustered (session level) standard errors. ⇤⇤⇤1%, ⇤⇤5%, ⇤10%.

For the average over all rounds, cooperation is lower during the later supergames and

significantly so for the easy stage-game. This observation is in contrast to some of the

studies in our meta data that find that the average cooperation rate increases with expe-

rience. However, subjects played 30 supergames in our experiment, which is substantially

more than in any of the studies in our meta data. To provide a more complete compari-

son with the studies from the meta-analysis, Table 4 reports the cooperation rate at the

supergames corresponding to the length of the various studies in our meta data, as well as

in our first and last supergame. For E8, there is a clear increase in cooperation rates early

on, followed by a decline. Indeed, the parameters used in this treatment are the closest

to the studies in which aggregate cooperation is found to be increasing with experience–

namely, those with a longer horizon. The non-monotonicity observed in this treatment,

with respect to the evolution of aggregate cooperation rates with experience, suggests

that experimental design choices, such as the number of repetitions of the supergame in

a session, can significantly alter the type of conclusions drawn from the data.

Table 4: Cooperation Rate for All Rounds in Supergames 1, 2, 8, 20 and 30

Supergame
Treatment 1 2 8 20 30

D4 31.5 21.0⇤⇤⇤ 12.5⇤⇤⇤ 11.5⇤⇤⇤ 6.6⇤⇤⇤

D8 36.3 36.3 36.8 35.6 32.6⇤⇤

E4 28.2 29.8 30.2 19.4 20.0⇤

E8 47.6 53.8⇤⇤ 61.4⇤⇤⇤ 51.4 51.6

Notes: Statistical test is for di↵erence from Supergame 1.
Notes: For E8, decline from Supergame 8 to 30 is significant at the 1% level.
Notes: Significance reported using subject random e↵ects and clustered (session level) standard errors. ⇤⇤⇤1%, ⇤⇤5%, ⇤10%.

Figure 4 provides some insight into the underlying forces generating the di↵erences

in the aggregate results documented above. The figure shows the rate of cooperation in

each round, averaged over the first five supergames, supergames 13 to 17 and the last

five supergames. In the long-horizon treatments, especially in E8, cooperation in early

rounds increases with experience. The line associated with the first five supergames lies

below the one associated with the last five for early rounds. This pattern contrasts with
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the short-horizon sessions in which the first-five average is at least as large as the last-five

average. For later rounds, in all treatments, cooperation in the last five supergames is

lower than in the first five. With a short horizon, cooperation rates fall quickly after the

first round. When the horizon is long, this decline does not happen until later, coming

after six rounds in early supergames and after four or five rounds in later supergames.27
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Figure 4: Cooperation Rate by Round Separated in Groups of Five Supergames

4.3 Determinants of Initial Cooperation

Figure 5 shows, for each treatment, the round-one cooperation rate by supergame.

The treatments generate very di↵erent dynamics with respect to how initial cooperation

evolves with experience, again emphasizing how critical the parameters of the stage-

game and the horizon can be in determining the evolution of play. The D4 treatment

27Online Appendix A.3 includes a complete pairwise comparison of the cooperation measures by treat-
ment.
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shows decreasing initial cooperation rates, whereas the E8 treatment shows a notable

increase over supergames. The cooperation rates for D8 and E4 look very similar. Neither

treatment suggests a trend over supergames, and cooperation rates stay within the 40-

60% range for the most part. In fact, round-one cooperation rates are not statistically

di↵erent across the two treatments. Moreover, cooperation rates in supergames one and

30 are statistically indistinguishable between the two treatments.28

Remember that in our experiment, the horizon and the stage-game payo↵s were chosen

so that the sizeBAD for E4 and D8 are identical. The equivalence of initial cooperation

rates between the two treatments suggests that, from the perspective of the first round,

the horizon of the repeated game has an e↵ect on cooperation mainly through its impact

on the value of cooperation. An important implication of this is that our findings run

counter to the folk wisdom described earlier, which attributes higher cooperation rates

in longer horizons to the di�culty of having to think through more steps of backward

induction.
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Figure 5: Average Cooperation Rates in the First Round

5. The Breakdown of Cooperation

Since the E8 treatment provides the starkest contrast to the backward induction pre-

diction, we first provide a more detailed description of behavior in this treatment. We

28In addition to being true for all supergames pooled together, this is true for most supergames taken
individually, except for a few outliers. E4 is higher in supergames 12 and 14 (at the 10% and 5% level,
respectively) and D8 is higher in supergames 18, 19, and 21 (at the 10%, 5%, and 5% level, respectively).
Pooling across supergames from the first and second half of a session separately, cooperation rates are
not significantly di↵erent between E4 and D8 (see Online Appendices A.3 and A.4 for details).
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then apply the key findings from this section to the other treatments and to the other

studies in our meta-analysis in the following section.

5.1 Behavior in the E8 treatment

Figure 6 tracks cooperation rates across supergames, with each line corresponding to

a specific round of the supergame. The selected rounds include the first round and the

final three rounds.29 Looking at the last round, the trend toward defection is clear. The

round before that shows a short-lived increase in cooperation followed by a systematic

decline. Two rounds before the end, the cooperation rate increases more dramatically

and for a longer time, but this is eventually followed by a gradual decline. Cooperation

rates in round one increase for most of the experiment but then stabilize towards the end,

at a high level close to 90%. Hence, confirming the results from prior studies with longer

horizons, cooperation early in a supergame increases with experience, but cooperation

at the end of a supergame decreases with experience. In addition, non-monotonicity in

cooperation rates for intermediate rounds suggests that the decline in cooperation slowly

makes its way back from the last round. On the whole, there is a compelling picture of

the unraveling of cooperation. However, the process is slow, and, even by the thirtieth

supergame, cooperation is not decreasing in the first round.

0
.2

.4
.6

.8
1

C
oo

pe
ra

tio
n 

R
at

e

0 5 10 15 20 25 30
Supergame

 Round 1  Last Round
 Last Round -1  Last Round -2

Treatment E8

Figure 6: Mean Cooperation Rate by Round

Thus, we have conflicting observations: behavior at the end of a supergame moves

slowly in the direction suggested by backward induction, while cooperation in early rounds

increases with experience. To reconcile the conflict, consider the aggregate measure, mean

round to first defection. This measure is a meaningful statistic to represent the unraveling

29Online Appendix A.3 replicates Figure 6, including all rounds.
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of cooperation, primarily because we think of subjects using threshold strategies. That

is, we expect defection by either player to initiate defection from then on. Hence, the

typical description of backward induction in a finitely repeated PD implicitly involves

the use of threshold strategies: (conditionally) cooperative behavior in the beginning of

a supergame that is potentially followed by noncooperative behavior at the end of the

supergame. Indeed, reasoning through the set of such strategies provides a basis for

conceptualizing the process of backward induction.

A threshold m strategy is formally defined as a strategy that defects first in round m,

conditional on sustained cooperation until then; defection by either player in any round

triggers defection from then on. Consequently, this family of strategies can be thought

of as a mixture of Grim Trigger (Grim) and AD. They start out as Grim and switch to

AD at some predetermined round m. The family of threshold strategies includes AD, by

setting m = 1. It also includes strategies that always (conditionally) cooperate, as we

allow for the round of first defection, m, to be higher than the horizon of the supergame.

Thus, it is possible to observe joint cooperation in all rounds of a supergame if a subject

following a threshold strategy with m > horizon faces another subject who follows a

similar strategy. However, any cooperative play in a round after the first defection in the

supergame, regardless of who was the defector, is inconsistent with a threshold strategy.

Threshold strategies also have the property that a best response to a threshold strategy

is also a threshold strategy.30

If subjects use threshold strategies, then it would be equivalent to measure cooperation

using the mean round to first defection or the mean round to last cooperation, as threshold

strategies never cooperate after a defection.31 These di↵erent statistics are presented in

the same graph in the left panel of Figure 7. Two key observations are immediately

apparent. First, the two lines are very di↵erent to start with but slowly converge. Second,

mean round to last cooperation is decreasing with experience while mean round to first

defection is increasing (at least in the early parts of a session).

If, instead of mean round to first defection, one considers mean round to last coopera-

tion, then it appears as if subjects move in the direction suggested by backward induction

in all treatments, including E8. The gap between the two lines suggests that the use of

threshold strategies becomes dominant over the course of the experiment. This suggestion

is confirmed in the right panel of Figure 7, which shows the fraction of choice sequences

perfectly consistent with the use of a threshold strategy.

Hence, aggregate measures such as the average cooperation rate and mean round to

first defection confound multiple forces. Subjects learning to play threshold strategies

30Threshold strategies are potentially di↵erent from conditionally cooperative strategies which other
studies of repeated social dilemmas have focussed on. Threshold strategies are by definition conditionally
cooperative only up to the threshold round (except if m > horizon). Always defect is not a conditionally
cooperative strategy, but is a special case of the threshold strategies (where m = 1).

31More precisely, for a subject using a threshold strategy, the last round of cooperation is the round
before the first defection, regardless of the opponent’s strategy. Hence, when we directly compare the
mean round to first defection and the mean round to last cooperation, we add one to the latter.
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Figure 7: Evolution of Threshold Strategies

can increase their cooperation at the beginning of a supergame, even if the strategy they

are learning is not more cooperative. To illustrate this e↵ect, consider a subject who,

on average, over the course of a session, plays a threshold strategy that (conditionally)

cooperates for the first four rounds and defects from round five onwards (m = 5). However,

the probability that the subject implements the strategy correctly is only 0.6 in early

supergames, whereas it is 1 in later supergames. If we assume that the distribution of

strategies used by the other subjects remains constant, and a su�cient share of them play

cooperative strategies, mean round to first defection will increase with experience for the

subject learning to use this threshold strategy. This is because the subject will sometimes

defect before round five in early supergames, even in the absence of any defection by her

partner, but never in later supergames. This type of learning behavior would also lead

to increasing cooperation rates in round one. In addition, it would generate a decreasing

round to last cooperation over supergames.32

For subjects who have settled on threshold strategies, it is possible to identify two

additional forces, each pulling in the opposite direction. If a subject believes that his

partner is likely to defect starting in round five, then he would want to start defecting at

round four. This is captured by the fact that a best response to a threshold m strategy

is a threshold m � 1 strategy. This reasoning is exactly the building block for the logic

of backward induction and leads to lower cooperation rates, a decrease in the round to

first defection among subjects using threshold strategies, and a decrease in the last round

32Burton-Chellew et al. (2016) make a related observation in the context of a public goods game. By
comparing how subjects play against other subjects vs. computers, they show that cooperative behavior
often attributed to social preferences in such contexts are better explained as misunderstandings in how
to maximize income.
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of cooperation. However, even if every subject uses threshold strategies, if there is het-

erogeneity in thresholds to start with, some subjects may realize over time that enough

of their partners use higher thresholds than they do and, thus, may want to defect later.

Such adjustments would lead to increases in some of the cooperation measures. Conse-

quently, the overall e↵ect on cooperation is ambiguous. These considerations highlight the

problems arising from restricting attention to these aggregate measures. They confound

the learning taking place on di↵erent levels: learning to use threshold strategies, updating

beliefs about the strategies of others, and best responding to the population.

Figure 8 provides further evidence for this interpretation. The graph on the left com-

pares the evolution of mean round to first defection for the whole sample to that of the

subset of pairs that jointly cooperate in Round 1. As expected, the line conditional on

Round 1 cooperation is higher, but the gap between the two lines shrinks as round 1 coop-

eration rates increase over time. Most importantly, conditional on achieving cooperation

in the first round, mean round to first defection actually decreases over time.33 The graph

on the right demonstrates this in another way, by plotting the distribution of the first

defection round for the first, the second and the last ten supergames. If the breakdown

of cooperation is defined as the first defection for a pair, then cooperation is most likely

to break down at the beginning or towards the end of the supergame. With experience,

the probability of breakdown at the beginning of a supergame decreases, but conditional

on surviving the first round, cooperation starts to break down earlier. The shift is slow

but clearly visible. The modal defection point (conditional on being higher than 1) shifts

earlier by one round for every ten supergames.

5.2 Breakdown of Cooperation in Other Treatments

Figure 9 illustrates, for the three other treatments, the evolution of cooperation for

the first and last three rounds. D8 has a similar increase in initial cooperation with

experience, as noted for E8, but it is less pronounced. Initial rates of cooperation are

below 60% for nearly all supergames and are mostly comparable to those observed in E4.

The lowest rates of initial cooperation are, as expected, in the D4 treatment. The rate

drops quickly from a starting point similar to the other treatments to a rate of about

20%, where it remains for the majority of the supergames.

For all treatments (including E8), cooperation in the last round is infrequent, espe-

cially after the first ten supergames. We observe a similar pattern for cooperation in the

penultimate round, although for the easy stage-games, cooperation either starts much

higher or takes more supergames to start decreasing. The treatments display more im-

portant di↵erences in behavior for the third from last round. Here, cooperation rates drop

consistently below the 20% mark in the di�cult stage-game treatments and take longer to

start decreasing in the long-horizon treatments. Cooperation in this round drops quickly

to very low levels in D4, hovers around the 20% mark in E4, and starts higher in D8 be-

fore dropping below 20%. Overall, this confirms the tendency of decreasing cooperation

33Note, however, that this decrease slows down considerably after supergame 16.
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rates to start from the last round and gradually shift to earlier rounds. However, this also

highlights that this process can be slow, as cooperation rates in round one decrease over

the 30 supergames in only one of the four treatments.
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Figure 9: Cooperation Rates in Selected Rounds Across Supergames

Figure 10 confirms the observations that not everyone plays threshold strategies at the

start of the experiment and that the use of threshold strategies grows with experience. In
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the D8 treatment, the gap between round to first defection and last round of cooperation

+ 1 is originally comparable in size to what is observed in the E8 treatment. With

experience, the two become closer. However, by the end, they are still not identical. For

the treatments with the short horizon, the gap is small to start with and even smaller

by the end. Note that with a shorter horizon, there are fewer possible deviations from

a threshold strategy. Moreover, with a longer horizon, there is more incentive to restore

cooperation after a defection is observed.34 These suggest that convergence to threshold

strategies would happen faster in shorter horizon games.
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Figure 10: Evolution of First Defection Versus Last Cooperation Across Supergames

What about experiments in the meta? Are there also indications of unraveling in these

once behavior is considered in a less aggregated form? To investigate this, we replicate

Figures 7 and 8 in Online Appendix A.2 for the the two experiments that allowed subjects

to play a substantial number of supergames: AM1993 and BMR2006. Both experiments

show patterns consistent with our experimental results. Cooperation in the last round

quickly decreases, whereas cooperation rates in earlier rounds first increase. The increase

is followed by a decrease once the next round’s cooperation rate is low enough. In both

studies, there is a steady increase in round-one cooperation that does not reach the point

where it starts decreasing.

Perhaps the most striking regularity to emerge across all the papers in the meta-study

and our own experiment is the universal increase in the use of threshold strategies when we

34Indeed, H is negatively correlated with play consistent with a threshold strategy in the first su-
pergame. This does not reach statistical significance if only considering our experiment (p = 0.11) but
it is significant at the 1% level when considering the entire meta data. Note that it is not statistically
related to g or `.
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compare the beginning of an experiment to the end (see Table 5). In the first supergame

of all studies with H � 8, less than 50% of play is consistent with a threshold strategy.

However, this number is higher than 75% in all but one treatment by the last supergame

(in many, it is more than 85%). Even in experiments with H = 4, which already begin

with 68% play of threshold strategies, they are more popular at the end. This suggests

a non-negligible amount of experimentation or confusion at the beginning of a session,

followed by a universal convergence to using threshold strategies.35,36

Table 5: Consistency of Play with Threshold Strategies

Play Consistent With
Threshold Strategy

Experiment Horizon g ` First Supergame Last Supergame

DB2005 2 1.17 0.83 – –
2 0.83 1.17 – –
4 1.17 0.83 0.68 0.80
4 0.83 1.17 0.68 0.78

FO2012 8 4.00 4.00 0.43 0.90
8 2.00 4.00 0.43 0.90
8 1.33 0.67 0.37 0.77
8 0.67 0.67 0.47 0.87

BMR2006 10 2.33 2.33 0.42 0.81
AM1993 10 1.67 1.33 0.29 0.79
CDFR1996 10 0.44 0.78 0.30 0.50

Meta All . . . 0.52 0.79

EFY (D4) 4 3.00 2.83 0.66 0.94
EFY (D8) 8 3.00 2.83 0.50 0.65
EFY (E4) 4 1.00 1.42 0.66 0.94
EFY (E8) 8 1.00 1.42 0.57 0.89

EFY All . . . 0.60 0.85

Notes: Supergame refers to supergame within a set of payo↵ and horizon parameters.

6. Long-run Behavior

The results of the last sections are highly suggestive that unraveling is at work in all

treatments. However, for some treatment parameters, the process is slow enough that it

would take too long for cooperation to reach close to zero levels in a reasonable amount

of time (for subjects to be in a laboratory). Hence, we now estimate a learning model

that will allow us to consider what would happen with even more experience. Using

estimates obtained individually for each subject, we can simulate behavior for many more

supergames than can be observed during a typical lab session. This can help us gain

35The only study in which consistency with the threshold strategy is still low (at only 50%) by the last
supergame is CDFR1996, in which the last supergame is only the second supergame.

36Statistical significance is established in the regressions reported in Online Appendix A.2.
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insight into whether the unraveling would eventually move back to round one or whether

it would stop short of going all the way. It can also give us a sense of the speed at

which this might happen, as well as providing structural estimates for a counterfactual

analysis and an exploration of the expected payo↵s of di↵erent strategies conditional on

the distribution of play.

6.1 Model

The general structure of the learning model we adopt is motivated by the following

observations documented in the previous sections: (1) cooperation rates in the first round

of a supergame are decreasing in the size of the basin of attraction of AD; (2) choices

respond to experiences with other players in previous supergames; and (3) a majority of

subjects converge to using thresholds strategies. These observations suggest that subjects

are influenced by their beliefs over the type of strategy their partners are following (point 2

above), and by the implied value of cooperation given these beliefs, which is also a function

of the stage-game payo↵s and the supergame horizon (point 1 above). We specify a simple

belief-based learning model that can capture these key features.37

Each subject is assumed to start the first supergame with a prior over the type of

strategies her partner uses. The set of strategies considered in the learning model consists

of all threshold-type strategies along with TFT and Suspicious Tit-for-Tat (STFT).38

Note that, contrary to the threshold strategies, TFT and STFT allow for cooperation to

re-emerge after a period of defection within a supergame. We have included all strategies

for which there is evidence of systematic use in the data.39

Beliefs evolve over time, given a subject’s experience within a supergame. After every

37This is similar to the recent use of learning models to investigate the evolution of behavior in dy-
namic games. Dal Bó and Fréchette (2011) do this in the context of indefinitely repeated games ex-
periments; Bigoni et al. (2015) use a learning model to better understand the evolution of play in their
continuous-time experiments. In both cases, however, the problem is substantially simplified by the
fact that strategies take extreme forms–immediate and sustained defection or conditional cooperation
(sustained or partial). In the first paper, restricting attention to initial behavior is su�cient to identify
strategies; in the second paper, initial and final behavior are su�cient to discriminate among the strate-
gies considered. This will not be possible here, and, hence, estimating a learning model poses a greater
challenge.

The approach described here is closest to that of Dal Bó & Fréchette (2011). The model is in the
style of Cheung & Friedman (1997). The reader interested in belief-based learning models is referred to
Fudenberg (1998). There are many other popular learning models: some important ones are found in
Crawford (1995), Roth & Erev (1995), Cooper et al. (1997), and Camerer & Ho (1999).

38The set of threshold strategies includes a threshold strategy that cooperates in every round if the
other subject cooperates (threshold is set to horizon +1), as well as AD (threshold is set to 1). TFT
and STFT replicate the other player’s choice in the previous round; TFT starts by cooperating, whereas
STFT starts by defecting.

39Cooperating all the time, irrespective of the other’s choice, is not included in the strategy set because
there is no indication in the data that subjects follow such a strategy. More specifically, even the most
cooperative subject in our dataset defected at least 34 times throughout the session, and at least 15 times
in the last ten supergames.

23



supergame, a subject updates her beliefs as follows:

�it+1 = ✓i�it + Lit (1)

where �k
it can be interpreted as the weight that subject i puts on strategy k to be adopted

by his opponent in supergame t.40 ✓i denotes how the subject discounts past beliefs (✓i = 0

gives Cournot dynamics; ✓i = 1 fictitious play), and Lit is the update vector given play

in supergame t. Lk
it takes value 1 when there is a unique strategy that is most consistent

with the opponent’s play within a supergame; for all other strategies, the update vector

takes value 0. When there are multiple strategies that are equally consistent with the

observed play, threshold strategies take precedence, but there is uniform updating among

those.41

Given these beliefs, each subject is modeled as a random utility maximizer. Thus, the

expected utility associated with each strategy can be denoted as a vector:

~µit = ~uit + �i~✏it (2)

~uit = ~U�it, where ~U is a square matrix representing the payo↵ associated with playing

each strategy against every other strategy. Note that ~U is a function of the horizon of

the repeated game, as well as of the stage-game payo↵s. The parameter �i is a scaling

parameter that measures how well each subject best-responds to her beliefs, and ✏it is

a vector of idiosyncratic error terms. Given standard distributional assumptions on the

error terms, this gives rise to the usual logistic form. In other words, the probability of

choosing a strategy k can be written as:

pkit =
exp(u

k
it
�i
)

P
k exp(

uk
it
�i
)

(3)

The structure of the learning model that we adopt is typical. What is unusual in

our case is that, on this level, it describes choices over strategies rather than actions. It

captures the dynamics of updating beliefs across supergames about the strategies adopted

by others in the population and, consequently, describes learning about the optimality of

di↵erent strategies.42

40Note that the sum of the components of �it need not sum to 1. This sum can be interpreted as
the strength of the prior. In combination with ✓i, the sum captures how much emphasis is given to new
experiences in updating beliefs.

41The tie-breaking rule, which favors threshold strategies in the belief updating, eliminates the possi-
bility of emergence of cooperation via TFT-type strategies in an environment in which all subjects have
settled on threshold strategies, as observed towards the end of the sessions in our data.

42Cox et al. (2015) propose a similar model of boundedly rational behavior in the finitely repeated
PD, in which they relax the assumption that players’ prior beliefs are consistent with their opponent’s
best response. They explore bounds on initial beliefs that can sustain cooperative behavior and highlight
parallels between the theoretical predictions of the model and experimental results. However, they do
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Not all behavior within a supergame is perfectly consistent with subjects following one

of the strategies that we consider. Allowing for other behavior is important to describing

the evolution, but it comes at the cost of more parameters to estimate. Given that our data

suggest that threshold strategies become dominant over time, we follow a parsimonious

approach, and instead of expanding the set of strategies considered, we augment the

standard model by introducing an implementation error.43

The implementation error introduces noise into how strategies are translated into ac-

tions within a supergame. In every round, there is some probability that the choice

recommended by a strategy is incorrectly implemented. As the results have shown, in

some treatments, all choices quickly become consistent with threshold strategies, while in

others, the choices inconsistent with threshold strategies disappear more slowly. To ac-

count for this, the implementation error is specified as �it = �ti
i , where t is the supergame

number and 0  �it  0.5. Such a specification allows for extremely rapid decreases in

implementation error (high ) as well as constant implementation error ( = 0). Specifi-

cally, given her strategy choice and the history of play within a supergame, �it represents

the probability that subject i will choose the action that is inconsistent with her strategy

in a given round.44

In summary, for each subject, we estimate �i0, �i, �i, which describe initial beliefs,

noise in strategy and action choice implementation, and ✓i, i, which describe how beliefs

are updated with experience and how execution noise changes over time.45 The estimates

are obtained via maximum likelihood estimation for each subject separately.46 We provide

summary statistics of the estimates in Online Appendix A.5.

It is important to clarify that the model allows for a great range of behavior. Neither

convergence to threshold strategies, nor unraveling of cooperation is structurally imposed,

although both are potential outcomes under certain sets of parameters.

6.2 Simulations

We first use individual-level estimates in conducting simulations to determine if the

learning model captures the main qualitative features of the data. Then, we use the

not structurally estimate the model to study long-term behavior.
43There is also no other strategy for which there is su�cient evidence to indicate that a portion of the

population might be using it systematically.
44The implementation noise a↵ects play within a supergame in two possible ways. The first is the

direct e↵ect; in every round, it creates a potential discrepancy between intended choice and actual choice.
The second is the indirect e↵ect; it changes the history of play for future rounds.

45When H = 4, this represents 11 parameters for 120 observations (30 supergames of four rounds),
and when H = 8, it is 15 parameters for 240 observations (30 supergames of 8 rounds). Except in the
two sessions of 20 supergames, where there are 80 and 160 choices per subject for the short and long
horizons, respectively.

46An alternative would be to pool the data. However, for the purpose of this paper and given the number
of observations per subject, obtaining subject-specific estimates is useful and reasonable. Fréchette (2009)
discusses issues and solutions related to pooling data across subjects in estimating learning models and,
more specifically, with respect to hypothesis testing.
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simulations with more repeated games to understand how cooperation would evolve in

the long run.47 These simulations consist of 100,000 sessions by treatment.48

The learning model fits the data well in terms of capturing the di↵erences between

the treatments with respect to aggregate cooperation rates, mean round to first defection,

and evolution of behavior within a session in all treatments. This is illustrated for the

E8 treatment in Figure 11, which compares the average simulated cooperation rate for

each round of the repeated game with the experimental results.49 The simulation results

capture the key qualitative features of behavior observed in the data remarkably well. In

particular, cooperation rates are clearly increasing in the early rounds of a supergame,

while decreasing in later rounds, as observed in the data. For rounds in the middle, such

as rounds 5 and 6, there is non-monotonicity in cooperation rates, as they first increase

and later decrease. Note that these features are recovered in a model in which there are no

round- or supergame-specific variables, and updating occurs over beliefs about strategies

only between supergames.
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Figure 11: Average Cooperation: Simulation Versus Experimental Data for Each Round
In E8

47For the simulations, subjects who show limited variation in choice within a session are selected out,
and their actions are simulated directly. Specifically, any subject who cooperates for at most two rounds
throughout the whole session is labeled an AD-type, and is assumed to continue to play the same action,
irrespective of the choices of the subjects she is paired with in future supergames. None of the subjects
identified as AD types cooperates in any round of the last ten supergames. This identification gives us
3/5/11/17 subjects to be AD types in treatments E8/D8/E4/D4, respectively.

48The composition of each session is obtained by randomly drawing (with replacement) 14 subjects (and
their estimated parameters) from the pool of subjects who participated in the corresponding treatment.

49Online Appendix A.5 replicates this analysis for other treatments and also includes detailed figures
focusing only on the first 30 supergames.
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Figure 11 also provides insights into the way cooperation would evolve in the long run.

The supergame (number of repeated games) axis is displayed in log scale to facilitate the

comparison between evolution of behavior in the short term versus the long term. We

observe that in this treatment, which is most conducive to cooperation, there is still

cooperation after 1000 supergames. However, this is clearly limited to early rounds.

More importantly, cooperation rates, if they are still positive, continue declining in all

rounds, even after 1000 supergames.50 The evolution suggests that there is unraveling of

cooperation in all rounds, but that it is so slow that cooperation rates for the first round

of a supergame can remain above 80% even after significant experience.51 In contrast,

we show in Online Appendix A.5 that cooperation rates in all other treatments quickly

decline to levels below 10% with little experience.

6.3 Counterfactuals

In the remainder of this section, we investigate which factors contribute to the sus-

tained cooperation predicted by the learning model for long run behavior in E8. To do

so, we take advantage of the structure of the learning model and study how cooperation

evolves in the long-run under di↵erent counterfactual specifications.

The Kreps et al. (1982) model shows that sustained cooperation until almost the

last round can be a best response to a small fraction of cooperative subjects from a

rational agent who understands backward induction. Since our estimations for the learning

model are at the subject level, we can directly investigate if there is, indeed, significant

heterogeneity in cooperative behavior in the population and whether or not this a↵ects

the unraveling of cooperation. In Online Appendix A.5, we compare cooperation rates in

simulations where all subjects are included to those where the most cooperative subjects

are removed from the sample. The comparative statics suggest that the existence of

cooperative types can slow down unraveling, but the e↵ect seems to be limited.

Next, to explore the extent to which stage-game payo↵s–through their e↵ect on strat-

egy choice and, consequently, evolution of beliefs–can explain why unraveling is faster in

the D8 treatment relative to the E8 treatment, we conduct the following counterfactual

simulations: We take the individual-level estimates for the learning model from the E8

treatment and simulate how these subjects would play the D8 stage-game. This exercise

enables us to keep the learning dynamics (priors, updating rule, strategy choice, and im-

plementation error) constant while varying only the stage-game parameters. In Figure 12,

this is plotted as CF1. The comparison of E8 and CF1 provides a striking depiction of

the importance of the stage-game parameters in the evolution of behavior. The gap be-

tween the two lines for the first supergame demonstrates the impact of the stage-game

50Regressing cooperation on supergame using the last 50 supergames of the simulations by round reveals
a negative coe�cient for all rounds. The negative coe�cient is significant in all rounds except round 4,
5, and 8 where cooperation levels are 20%, 9% and 1% by the 1000th supergame.

51While there is evidence of a slow but continued decline in cooperation within the span of our simu-
lations, it does not rule out the possibility that unraveling eventually stagnates at non-zero cooperation
levels with further experience.
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Figure 12: Long Term Evolution of Aggregate Cooperation

parameters on strategy choice when beliefs are kept constant. The gap widens with ex-

perience as subjects interact with each other and update their beliefs about others, such

that cooperation quickly reaches levels below 10% in less than 50 supergames in CF1.52

Estimates from the learning model can also be used to investigate the optimality of

strategy choice among subjects. In Online Appendix A.5, we plot the expected payo↵

associated with each strategy and the frequency with which this strategy is chosen for

each treatment. This exercise reveals that expected payo↵s are relatively flat in E8.53

This provides further evidence for why unraveling is slow in this treatment.

Overall, we see that the speed of unraveling is closely connected to how conducive

stage-game parameters are to cooperation, closely mirroring our results on the size of the

basin of attraction of AD as a determinant of initial cooperation.

52We can also study the opposite counterfactual (as plotted in Online Appendix A.5). That is, we can
keep the E8 stage-game parameters constant, but use learning estimates for the subjects who participated
in the D8 treatment. Limited unraveling of cooperation with this counterfactual further highlight that
this behavior is driven by stage-game parameters rather than treatment specific learning dynamics.

53For example, we see that in the first supergame, the optimal strategy is using Threshold 7 or 8, while
in the last supergame of the session, it is Threshold 5 or 6. For the frequency of choice, TFT is the
most popular strategy early on in the session, but it is replaced by late threshold strategies by the end
of the session. In both cases, some of the most popular strategies are suboptimal, but the expected loss
associated with using them is small. In comparison, expected payo↵s and frequency of choice associated
with the strategies are quite di↵erent in D8. AD (Threshold 1) is the optimal strategy at both the
beginning and the end of the session. While TFT and STFT are common choices in the first supergame,
AD is the most frequent by the last.
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7. Discussion

Despite the wealth of experimental research on the finitely repeated PD, prior evi-

dence provides a limited understanding of the factors that contribute to the emergence of

cooperation and its possible unraveling with experience.

In this paper, to understand how cooperative behavior and its evolution with experi-

ence vary with the environment in this canonical game, we re-analyze the data from prior

experimental studies and supplement these results with a new experiment. In doing so,

we are able to reconcile many of the contradictory results in the prior literature, which,

we argue, are driven by two behavioral regularities: the role of the value of cooperation

and the emergence of threshold strategies.

Our paper makes several further contributions to the literature. First, we show that

the parameters of the supergame–the horizon in particular–have a significant impact on

initial cooperation. Our analysis reveals that a longer horizon increases initial cooperation

because it increases the value of using conditionally cooperative strategies, which can be

captured by a simple statistic: the size of the basin of attraction of the Always Defect

strategy. This value-of-cooperation result relates to recent studies on continuous-time

PD games (Friedman & Oprea (2012); Bigoni et al. (2015); Calford & Oprea (2017)).

Friedman & Oprea (2012) conclude that the unraveling argument of backward induction

loses its force when players can react quickly. Treatment di↵erences in our experiment

are driven by similar forces. The decision to cooperate depends on how the temptation

to become the first defector compares to the potential loss from defecting too early. The

size of the basin of attraction captures this trade-o↵ precisely and, in doing so, highlights

the role of strategic uncertainty in determining cooperative behavior. The predictive

power of the size of the basin of attraction can also be understood from an evolution-

ary game theory perspective. The size of the basin of attraction can be interpreted to

capture the robustness of Always Defect as an evolutionary stable strategy in a finitely

repeated prisoners dilemma.54 It has been argued that, while defection should dominate

in short-horizon finitely repeated PD games, as the horizon increases, the emergence of

conditionally cooperative strategies should become more likely (for instance, see Fuden-

berg & Imhof (2008); Imhof et al. (2005)). This is highly intuitive. The presence of a small

share of conditionally cooperative players can make it worthwhile to initiate cooperative

play, especially in long-horizon games conducive to cooperation. This also fits nicely with

our results on long-term dynamics using the learning model. Noise in strategy choice

or implementation of actions can be interpreted as stochastic invasions by alternative

strategies that consequently slow down, or even could possibly prevent, the unraveling of

cooperation (as we observe in the E8 treatment).

Second, the paper identifies a crucial regularity–namely, that threshold strategies al-

ways emerge over time. That is, in every study of the finitely repeated PD in which the

54It is linked to the size of the invasion (share of the population following the alternative strategy)
needed to take over Always Defect.
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game is played more than once, threshold strategies are substantially more common by

the end of the experiment. While the role of threshold strategies has been noted in the

previous literature (for instance theoretically in Radner (1986) and recently empirically

investigated in Friedman & Oprea (2012)), we find convergence to using threshold strate-

gies to be a critical and systematic feature of the evolution of behavior in this game.

Hence, we identify the interaction of two opposing forces–learning to cooperate in early

rounds by convergence to using threshold strategies and learning to defect in later rounds

due to the unraveling argument of backward induction–to be fundamental in explain-

ing the variation across papers and treatments in the evolution of behavior. This result

also highlights an essential di↵erence between the finitely repeated PD and the centipede

game, which, by construction, constrains players to conditionally cooperative threshold

strategies. While both games have been extensively used to study backward induction,

our results suggest that, (at least) short-term dynamics in these games are governed by

potentially di↵erent forces.

Finally, although our study is not explicitly designed to test alternative theories that

predict cooperation in the finitely repeated PD, we can relate our results to these theo-

ries. Analysis using the learning model indicates that there is some heterogeneity across

subjects in terms of responsiveness to past experiences and willingness to follow coopera-

tive strategies. This observation suggests that the reputation-building forces identified in

the model of Kreps et al. (1982) may play a role in generating cooperation and slowing

down the unraveling of cooperation in the finitely repeated PD. Although, in contrast to

the static nature of the Kreps et al. (1982) model, the behavior we observe suggests that

beliefs change significantly across supergames in response to past experiences.55 On the

other hand, as discussed earlier, the value-of-cooperation result supports the approximate

best-responses approach of the epsilon-equilibrium model in Radner (1986), as suggested

by Friedman & Oprea (2012). Di↵erences in cooperative behavior across our treatments

appear to be driven primarily by the corresponding di↵erences in the trade-o↵ between

initiating cooperation versus defection when there is uncertainty about the strategy fol-

lowed by one’s opponent. While our analysis suggests that the unraveling of cooperation

is still happening towards the end in all of our treatments, especially in environments

with potentially high returns to cooperation, we cannot rule out that cooperation would

stabilize at positive levels with further experience. In such treatments where unraveling

is particularly slow, we estimate that a portion of the population follows more coopera-

tive strategies than the optimal best-response to the population, but the relative cost of

adopting these strategies is quite small.

55Note that we do not see any evidence of subjects following unconditionally cooperative strategies.
This confines the space of behavioral types that can be meaningfully considered in this setting.
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