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Abstract

This is the online appendix for Embrey et al. (2014). Four sections
are included, which provide further details for the theory, experimental
design and results sections of Embrey et al. (2014), as well as providing
a detailed description of theoretical extensions aimed at incorporating
observed deviations from the baseline theory.
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1 Theory

This section provides further details of the relevant theoretical results for a
symmetric version of the stylized bargaining and reputation model of Abreu
and Gul (2000).1 First, the setup and the description of the equilibrium is
repeated. Although included in the main paper, this ensures the section is
self-contained. Subsection 1.2 details the system of equations that are used to
find a numerical solution for equilibrium behavior by rational types. Subsec-
tion 1.3 provides further details of equilibrium behavior for the special case
where all types are aggressive. Subsections 1.4, 1.5 and 1.6 provide further
details of the key equilibrium predictions stated in the paper. Subsection 1.7
details the numerical strategy used to solve for the equilibrium strategy for a
general set of behavioral types. The final subsection provides some numerical
examples.

1.1 Set Up and Equilibrium Play

Two agents bargain over a pie of size one in two stages. In the first stage
each player simultaneously announces a demand αi (i.e. the faction of the
pie they would like). If the two demands are compatible (i.e. α1 + α2 ≤ 1)
then the game ends immediately.2 If the two demands are incompatible, the
game proceeds to stage two, where a continuous-time concession game with
an infinite horizon starts. That is, for each point in time, t ∈ [0,∞), both
players can choose to accept (i.e. concede) or hold out. If player i concedes,
she receive 1 − αj, while if j concedes, player i receives αi. Preferences
of agents are risk neutral, with a common discount factor r. Thus, if an
agreement is reached at time t in which an agent receives a share x, then
their payoff is e−rtx.

In addition, there is some probability that a player may face a behavioral
type who is obstinate in their demands. Define C := {α1, ..., αK} as the set
of behavioral types, with αi < αi+1, for i = 1, ..., K − 1, and αK ≥ 1

2
. An

αk-type always demands αk and only accepts an offer that gives them at least

1What is contained here is implicit in Abreu and Gul (2000). Some results for equi-
librium announcements have been taken from Abreu and Sethi (2003), where the authors
use the symmetric version of the model.

2If the announcements sum to strictly less than one, a sharing rule is used for the
remainder. While other sharing rules can be accommodated, in the experiments we divide
the remainder equally.
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αk. The probability that a player is an αk-type is zk, for k = 1, ..., K. The
probability that a player is rational is denoted by z0 = 1 −

∑K
k=1 zk. This

distribution over types is summarized by the vector z = {z1, ..., zK}. Last,
a behavioral type is defined as aggressive if it is incompatible with all other
behavioral types in C and weakly incompatible with itself.

A key property of the equilibrium is that a rational player would only
choose a demand that mimics some behavioral type (i.e. αi ∈ C for i =
1, 2). Consequently, players can be identified by the element of C that they
announce in the first stage, αk, αl ∈ C. In a symmetric equilibrium, define
µk to be the probability that a rational player announces demand αk. Given
this symmetric equilibrium, the probability that a player is irrational given
an announcement αk is given by

πk =
zk

zk + z0µk
(1)

In equilibrium, with a general set C, rational players will employ a mixed
strategy over announcing different types in the first stage. If the set C
contains a type, α, such that α ≤ 1

2
, there is a possibility that this type will

not be replicated in equilibrium. However, if a behavioral type is replicated,
then all more aggressive types are also replicated. As such, the support of the
equilibrium mixing strategy, µ, will be of the form {αR, ..., αK}, where 1 ≤
R < K. Ensuring that rational players are indifferent between announcing
any αk (for k = R, ...,K), along with the µ being a probability measure (and
therefore summing to one), yields the (K −R + 2) equations needed to solve
for µ and the expected payoff for rational players.3

Suppose a rational player announced αk and faces an opponent who has
announced αl, where αk + αl > 1, causing the players to move on to the
concession stage.4 The unique equilibrium play in the incomplete information
war of attrition game is given by a mixed strategy over the time of concession.

3This is a system of non-linear equations that only has a numerical solution, except
for trivial cases. See subsection 1.7 for details of the numerical strategy used to solve this
system of equations.

4Note that the player who announced αl could be either an αl−type or a rational player
who has mimicked the αl−type.
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The αk player concedes with constant hazard rate, λkl, given by5

λkl =
r (1− αk)
αk + αl − 1

(2)

over the interval [0, T0] , where T0 = min (Tkl, Tlk) and Tkl = − ln(πk)
λkl

and

Tlk = − ln(πl)
λlk

. Thus, equilibrium is generally characterized by inefficient
delay. Concession by the αk rational player is governed by the distribution

function F̂kl
1−πk

, where

F̂kl (t) =

{
1− ckle−λklt, for t ∈ [0, T0]

1− πk, for t > T0
(3)

and ckl = πke
λklT0 and (1− ckl) (1− clk) = 0. Note that the distribution func-

tion is expressed in terms of F̂kl for notational convenience: a rational player
who announced αl, when their opponent announced αk, faces a “mixed”
strategy over the time of concession given by F̂kl (i.e. unconditional on the
αk player being rational). Figure 1 provides an illustration of this concession
behavior in a subgame following announcement αl and αk, where αl+αk > 1
and αl < αk.

The value of Tkl is a measure of the αk rational player’s “strategic” weak-
ness when facing an αl player: if Tkl > Tlk, then the αk-player concede at
time t = 0 with strictly positive probability (mass), given by qkl := (1− ckl).
Such concession is referred to as initial concession. Concession resulting from
the continuous part of the distribution function is referred to as interior con-
cession.

1.2 Setting up the System of Equations

Consider a general set of behavioral types C = {α1, ..., αK}. Denote by
the index p the smallest aggressive demand.6 As mentioned in section 1.1
above, for such a general set C the equilibrium first stage announcement
strategy by rational players will be to employ a mixed strategy over a set

5So long as it remains possible that their opponent is a rational-type, a rational player
who announced αk is indifferent between conceding and not conceding at a time t if
r (1− αl) = [αk − (1− αl)]λlk, where λlk is the hazard rate for concession by the opponent
unconditional on knowing whether the opponent is rational or not. Equation 2 ensures
this indifference holds.

6If there are no aggressive types in the set C set p = K.
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Figure 1: Example of Concession Behavior in an Asymmetric Subgame
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{αR, ..., αp, ..., αK}, where 1 ≤ R ≤ p ≤ K. For (µR, ..., µK) to be an equi-
librium, rational players need to be indifferent between announcing demands
αR, ..., αK and have no incentive to announce a demand α1, ..., αR−1, given a
rational opponent employs the mixed strategy (µR, ..., µK).

The expected payoff to a rational player for making an announcement αi
when their opponent announces αj is as follows:7

EP [αi|αj] =


1
2

+
αi−αj

2
, if αi + αj ≤ 1

(1− αj) , if αi + αj > 1, Tij ≥ Tji
(1− αj) + (1− cji) (αi + αj − 1) , if αi + αj > 1, Tij < Tji

The above expression is used to calculate the expected payoff of announcing
a demand αi in stage 1, and to build a system of equations that need to be
satisfied in order for the mixed strategy (µR, ..., µK) to form an equilibrium,
in which the ex-ante expected value to a rational player is v:8

EP [αR]− v
...
EP [αK ]− v(∑K

i=R µi

)
− 1

 =


∑K

j=1 (zj + z0µj)EP [αR|αj]− v
...∑K

j=1 (zj + z0µj)EP [αK |αj]− v(∑K
i=R µi

)
− 1

 =


0
...
0
0

 (4)

When there are more than two aggressive types, i.e. p < K, the size of
the system of equations can be reduced. This can be done by taking ad-
vantage of the fact that an aggressive type is never conceded to initially by
another behavioral type (and being aggressive means that all other types are
incompatible and consequently result in a second stage). If there are at least
two such types, enforcing that neither type is ever conceded to initially guar-
antees that a rational player is indifferent between choosing either demand
in stage 1; the expected payoff in any subgame following announcing either

7When αi + αj > 1, the subsequent subgame is a war of attrition. Rational players
must be indifferent between conceding and not conceding for t ∈ (0, T0). If their opponent
would never concede initially to them, i.e. Tij ≥ Tji, then their expected payoff must be
whatever they would get if they conceded instantly. If their opponent concedes initially
with strictly positive probability, i.e. Tij < Tji, then their expected payoff is a convex
combination of what they would get by conceding instantly and what they would get if
the other conceded instantly, with weight (1− cji) on the latter payoff.

8Note that µi and µj enter cji in a non-linear fashion. Further note that there are
K − R + 2 equations, including the condition that the probabilities sum to one, and
K −R+ 2 unknowns, including the unknown value v.

10



demand is always 1− αj, where αj is the announcement made by the other
player. Let αp and αk be two aggressive types, with k > p. In any subgame
in which an αp-announcer and an αk-announcer meet, the equilibrium mixing
strategy over behavioral types must be such that µp and µk imply Tpk = Tkp:

− ln πp
λpk

= − lnπk
λkp

=⇒

πk = π
1−αk
1−αp
p

=⇒

µk =

(
zk
z0

)[(
zp + z0µp

zp

) 1−αk
1−αp
− 1

]

That is, we have µk = g (µp, zp, zk, z0), for k = p + 1, ..., K, which guar-
antees the expected payoff to announcing αk equals the expected payoff to
announcing αp. The system of equations can then be simplified to a system
of p−R + 2 equations in p−R + 2 unknowns (these are µR, ..., µp and v):

∑K
j=1 (zj + z0µj)EP [αR|αj]− v

...∑K
j=1 (zj + z0µj)EP [αp|αj]− v

(
∑p

i=R µi) +
(∑K

i=p+1 g (µp, zp, zi, z0)
)
− 1

 =


0
...
0
0


replacing µk with g (µp, zp, zk, z0), for k = p+ 1, ..., K, where ever it appears
in the expressions {EP [αi|αk]}i=R,..,p.

1.3 Special Case: Only Aggressive Types

1.3.1 Equilibrium Play

Assume the set C is such that α1 ≥ 1
2
. That is, all types are aggressive. In

this case, all behavioral types are replicated by rational players with positive
probability, µk > 0 for all k, and no player concede initially in any subgame
(that is Tkl = Tlk, for all k, l). In this special case, the system of equations
that are used to solve for µ can be further simplified to finding the root of
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the following equation:(
K∑
k=1

g (µ1, z1, zk, z0)

)
− 1 = 0

where

µk = g (µ1, z1, zk, z0)

= z̃k

[(
1 +

µ1

z̃1

) 1−αk
1−α1

− 1

]

and

z̃k :=
zk
z0

The result that Tkl = Tlk, for all k, l, gives the following simple observa-
tion: For any αk, αl ∈ C,

πk = π
λk
λl
l = π

1−αk
1−αl
l

Incorporating the definition of λkl = r(1−αk)
αk+αl−1

and the definition of πk =
zk

zk+z0µk
= 1

1+z0
µk
zk

to the above, gives the following useful observation on

equilibrium play in the first stage.

Observation 1 In equilibrium, given announcement pair αk and αl, the fol-
lowing are equivalent

αk > αl ⇐⇒ λkl < λlk

⇐⇒ πk > πl

⇐⇒ µk
µl

<
zk
zl

That is the ratio of “rational” players mimicking the more aggressive type
to those mimicking the less aggressive type is smaller than the ratio of more
aggressive behavioral types in the population to less aggressive types in the
population.

Since the equilibrium mixing strategy, µ, is such that there is no time zero
concession with strictly positive probability mass for any subgame allows the
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following analysis of concession behavior (irrespective of the particulars of the
numerical solution of µ). The probability that a player, which has announced
αk and faces an opponent who has announced αl, will concede in the second
stage is given by

p (αk announcer conceding)

=
(

λkl
λkl+λlk

) [
1− e−(λkl+λlk)T0

]
Note that this probability is unconditional on knowing that the αk announcer
is rational. This leads to the following observation:

Observation 2 In equilibrium, for any announcements pair αk, αl ∈ C,

p (αl announcer conceding) > p (αk announcer conceding)

⇐⇒
αl < αk

Observations 1 and 2 permit an interpretation of the equilibrium behavior
of rational actors: while for the most part they restrain themselves in the
behavioral type that they replicate (i.e. not going for the “greedier” types so
often), when they are aggressive in the initial stage, they remain aggressive
(in probabilistic terms) in the concession stage.9

1.3.2 Comparative Static

This subsection analyzes the predicted change in µk as z̃k := zk
z0

is changed
(keeping zl unchanged for l 6= k). This comparative static is the marginal
equivalent of replacing a human subject (whose behavior would be drawn
from (z0, z1, ..., zK)) with a computer player that plays a fixed rule αk.

10 The

9It should be noted that observation 2 also holds for a general set C (i.e. when not all
types are aggressive) if the probabilities are conditional on there being no initial concession.

10Consider a treatment, such as is implemented in our experimental sessions, where two
out of sixteen possible subjects are in fact computer players set up to behave like αk-types.
In the new treatment with computer players

pr (being rational) = pr (not a computer AND being rational)

= pr (not a computer) pr (rational)

=
13

15
z0
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implicit function theorem is applied to the system

G (µ1, z̃) :=

(
K∑
i=1

z̃i

[(
1 +

µ1

z̃1

) 1−αi
1−α1

− 1

])
− 1

the root of which defines the equilibrium mixing strategy, µ. Taking deriva-
tives with respect to z̃k and µ1 gives11

∂G

∂z̃k
=

(
1 +

µ1

z̃1

) 1−αk
1−α1

− 1

∂G

∂µ1

=
K∑
i=1

(1− αi)
(1− α1)

z̃i
z̃1

(
1 +

µ1

z̃1

) 1−αi
1−α1

−1

The implicit function theorem gives

∂µ1 (z̃)

∂z̃k
= −

[
K∑
i=1

(1− αi)
(1− α1)

z̃i
z̃1

(
1 +

µ1

z̃1

) 1−αi
1−α1

−1
]−1

×

[(
1 +

µ1

z̃1

) 1−αk
1−α1

− 1

]
To go from µ1 to µk, the following function is used

µk = z̃k

[(
1 +

µ1 (z̃)

z̃1

) 1−αk
1−α1

− 1

]
=⇒

∂µk
∂z̃k

=

[(
1 +

µ1

z̃1

) 1−αk
1−α1

− 1

]

+

[
(1− αk)
(1− α1)

z̃k
z̃1

(
1 +

µ1

z̃1

) 1−αk
1−α1

−1
]
× ∂µ1

∂z̃k

and for all l 6= k

pr (being behavioral l-type) = pr (not a computer AND being l-type)

= pr (not a computer) pr (l − type)

=
13

15
zl

Thus z̃l does not change for all l 6= k.
11It is assumed that k > 1. This simplifies the algebra and is without loss of generality

since the choice of µ1 as the “anchor” is completely arbitrary.
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Substituting the expression for ∂µ1

∂z̃k
calculated earlier into the above expres-

sion gives

∂µk
∂z̃k

=

[(
1 +

µ1

z̃1

) 1−αk
1−α1

− 1

]

×

1−

(
(1−αk)
(1−α1)

z̃k
z̃1

(
1 + µ1

z̃1

) 1−αk
1−α1

−1
)

∑K
i=1

(
(1−αi)
(1−α1)

z̃i
z̃1

(
1 + µ1

z̃1

) 1−αi
1−α1

−1
)


≥ 0

1.4 Key Equilibrium Predictions:
Announcements in the First Stage

Five properties of first-stage announcement behavior are explicitly mentioned
in the main text. These are:

1. Rational players will only make announcements that mimic some be-
havioral type.

2. If the announcement of a behavioral type is mimicked in equilibrium,
then the announcements of all more demanding behavioral types are
also mimicked.

3. Aggressive types are always mimicked in equilibrium.

4. If the set C contains only aggressive types, then

αk > αl ⇐⇒ µk <
zk
zl
· µl

That is, if the less demanding type is at least as probable as the more
demanding type, then rational players will mimic the more demanding
announcement less often.

5. If the set C contains a type that is compatible with all other types in
C (i.e., α + αi ≤ 1, for all αi ∈ C), then this type is never mimicked
by rational players.
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For a proof of property 1, the reader is referred to, for example, Section 2 of
Abreu and Sethi (2003). However, the consequences of making an announce-
ment that does not mimic some behavioral type can be seen by plugging in
πk = 0 into the expression for qkl = (1− ckl) from Section 1.1. A rational
player making such an announcement would concede instantly to any de-
mand by their opponent that mimics some behavioral type. Since the set
C contains at least one demand of at least half of the pie, rational players
would prefer to mimic this type, rather than announce a type that does not
correspond to some behavioral type.

For proofs of properties 2 and 3, the reader is referred to Section 2 of
Abreu and Sethi (2003). Property 4 is simply a restatement of Observation 1
from Subsection 1.3. Property 5 is immediate since announcing the always-
compatible strategy is strictly dominated by making the most demanding
announcement and conceding instantly should a second-stage be reached, so
this demand cannot be a member of the support of the equilibrium mixing
strategy.

1.5 Key Equilibrium Predictions:
Concession in the Second Stage

1.5.1 Initial Concession

The first point to note is that, considering only the implications of second-
stage equilibrium play, initial concession in the second stage between a player
that announced αi and a player that announced αj is determined by which

is smaller π
1

1−αi
i or π

1
1−αj
j . This follows from the expression for T0, the time

by which rational players who announced either αi or αj must have conceded
by. Suppose Tji < Tij, i.e. the αi-announcer must initially concede to the
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αj-announcer with strictly positive probability. Then,

T0 = − ln (πj)

λji

= −
ln
(
πi
cij

)
λij

⇐⇒
cij =

πi

π

(
1−αi
1−αj

)
j

Since in this case we have cij < 1, the above implies that

π
1

1−αi
i < π

1
1−αj
j

Note that the above inequality only considers the restrictions imposed
by second-stage equilibrium play. Adding the restriction that the symmetric
equilibrium is in mixed strategies, and therefore all choices in the mixed
strategy must give the same expected payoff, gives a stronger result. Namely,

Claim 1 Suppose αi + αj > 1. If αi < αj, then π
1

1−αi
i ≥ π

1
1−αj
j .

Proof. Suppose the contrary. That is there exits αi, αj ∈ C such that

αi + αj > 1, αi < αj and π
1

1−αi
i < π

1
1−αj
j . The proof contains two steps. The

first is to show that for any announcement, αk−announcement that con-
cedes initially to an αi−announcement with strictly positive probability, this
αk−announcer will concede initially to an αj−announcer with even greater
probability. The second step is to work through all possible subgames an
αi−announcer could face and show that the expected payoff is strictly less
than that which could be obtained by announcing αj. This provides a contra-
diction to both αi and αj being part of the same mixed equilibrium strategy.

Step 1: The aim here is to show that for any αk ∈ {α ∈ C|α + αi > 1}

such that π
1

1−αk
k < π

1
1−αi
i , it is the case that ckj < cki. Since, π

1
1−αk
k < π

1
1−αi
i <

π
1

1−αj
j , both ckj < 1 and cki < 1. Using the expression for c derived above
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gives

cki = πk

π
( 1−αk

1−αi )
i

=

π
(

1
1−αk

)
k

π

(
1

1−αi

)
i

1−αk

ckj = πk

π

(
1−αk
1−αj

)
j

=

 π

(
1

1−αk

)
k

π

(
1

1−αj

)
j


1−αk

By assumption π
1

1−αi
i < π

1
1−αj
j , thus ckj < cki and (1− ckj) > (1− cki); the

latter inequality being the probability of αk−announcer initially conceding to
an αj−announcer is strictly larger than the probability of an αk−announcer
initially conceding to an αi−announcer.

Step 2: For each of the following cases, the expected payoff of announcing
αi when facing an αk−announcer, denoted by EP [αi|αk], is compared to the
expected payoff to announcing αj, EP [αj|αk]:

• for αk ∈ C such that αk + αj ≤ 1:

EP [αi|αk] =
1

2
+
αi − αk

2

EP [αj|αk] =
1

2
+
αj − αk

2

Since, αi < αj, this implies EP [αi|αk] ≤ EP [αj|αk].

• for αk ∈ C such that αk + αj > 1 and αk + αi ≤ 1:

EP [αi|αk] =
1

2
+
αi − αk

2
EP [αj|αk] = (1− αk) + ckj (αj + αk − 1)

≥ 1− αk

Since αk + αi ≤ 1 implies αi ≤ 1− αk, it is the case that EP [αi|αk] ≤
1− αk ≤ EP [αj|αk].

• for αk ∈ C such that αk + αi > 1 and π
1

1−αk
k ≥ π

1
1−αi
i : In this case,

the αk−announcer will not concede initially to the αi−announcer (this
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could or could not be the case for the αj−announcer). Consequently,

EP [αi|αk] = 1− αk
EP [αj|αk] ≥ 1− αk

which again implies that EP [αi|αk] ≤ EP [αj|αk].

• for αk ∈ C such that αk + αi > 1 and π
1

1−αk
k < π

1
1−αi
i : In this

case, the αk−announcer will concede initially to both the αi− and
the αj−announcers with strictly positive probability. Consequently
the payoffs are

EP [αi|αk] = (1− αk) + (1− cki) (αi + αk − 1)

EP [αj|αk] = (1− αk) + (1− ckj) (αj + αk − 1)

Since αi < αj and, by step one, (1− cki) < (1− ckj), again it is the
case that EP [αi|αk] ≤ EP [αj|αk].

Consequently, for all possible announcements by the opposing player,
the expected payoff from announcing αj is at least as large as that from
announcing αi. Given that there is a strictly positive probability of the other
player being rational and announcing αi themselves, and the expected payoffs
in this case being

EP [αi|αi] = (1− αi)
EP [αj|αi] = (1− αi) + (1− cij) (αj + αi − 1)

announcing αj gives a strictly higher payoff than announcing αi. This is a
contradiction to αi and αj being a part of the same mixing strategy.

The above claim implies that, in subgames following announcements of
αL and αH with αL + αH > 1 and αL < αH , it is the player that made the
lower announcement, αL, that does not concede initially. That is cLH = 1
and cHL ≤ 1. Therefore, the probability that a player concedes initially
(without knowing whether or not they are rational) is given by:

p (αH concedes at t = 0) = (1− cHL)

≥ 0

= p (αL concedes at t = 0)
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In addition, the above claim enables a simplification in setting up the
system of equations used to solve numerically for the equilibrium mixing

strategy of rational players. Now the ordering of

{
π

1
1−αk
k

}K
k=1

is known in

advance, which means the rational announcers that need to concede initially
in any given subgame are known prior to solving for µ.

1.5.2 Interior Concession

If one conditions on the second stage not ending instantly (i.e. no initial con-
cession), then it is possible to calculate the probability of the αL announcer
and the αH announcer conceding in a subgame following announcements αL
and αH , such that αL + αH > 1 and αL < αH . Using the result of Sec-
tion 1.5.1, only the αH announcer has the possibility of making an initial
concession. The equilibrium distribution for concession by αH announcers,
unconditional on rationality, is given by

1− cHLe−λHLt = (1− cHL) + cHL
(
1− e−λHLt

)
This is a convex combination of the distribution that puts full weight on
instant concession and the distribution that ensures a rational αL-announcer
is indifferent between conceding or not at time t, for t ∈ (0, T0). The proba-
bility of conceding by a time t > 0 is then cHL

(
1− e−λHLt

)
, while, as before,

the probability of not conceding by t is cHLe
−λHLt. An analogous calcula-

tion to those made for observation 2 can be made to show that, once initial
concession has been ruled out, it is the αL announcer that is more likely to
concede in this subgame. Specifically,

p (αL concedes at t > 0) =

(
λLH

λLH + λHL

)(
1− e−(λLH+λHL)T0

)
cHL

p (αH concedes at t > 0) =

(
λHL

λLH + λHL

)(
1− e−(λLH+λHL)T0

)
cHL

Thus, λLH > λHL implies:12

p (αL concedes at t > 0) > p (αH concedes at t > 0)

12Note that the expression
(
1− e−(λLH+λHL)T0

)
cHL can be rewritten as cHL − πLπH .

This expression is the probability of interior concession by either player, that is the prob-
ability of concession at t > 0 minus the probability of disagreement.
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1.6 Key Equilibrium Predictions:
Amount of Delay in the Second Stage

1.6.1 Upper Bound on Average Delay

The stochastic process that governs the time until either player concedes
(given at least one eventually does) is first order stochastically dominated
by the process defined as conceding over the interval [0,∞) with a constant
hazard rate λkl+λlk. This is because the latter rules out initial concession by
the player making the greater first-stage demand, and extends the support
from [0, T0] to [0,∞). This results in both the mean and the median of the
latter being larger than the true stochastic process, thus providing upper
bounds. Specifically, in the subgame following announcements αk and αl,
the mean upper bound is given by

1

λkl + λlk

and the median upper bound is given by

ln (2)

λkl + λlk

where αk + αl > 1. Given values for the parameters of the game (that is the
underlying distribution of types, z), the actual averages can be calculated
for any given subgame since the distribution for concession time (by either
player) conditional on eventual agreement is given by

F̂min (t) =
1− cHLe−(λLH+λHL)t

1− πLπH

where αL + αH > 1 and αL ≤ αH . In particular for the median, this gives

tmed =

{
0 , if 1−cHL

1−πLπH
> 1

2

ln
(

2cHL
1+πLπH

)
λLH+λHL

, if 1−cHL
1−πLπH

≤ 1
2

1.6.2 Bounds on z Derived from Observed Delay

Consider the subgame following the announcement of αk and αl where αk +
αl > 1 for which there has been at least one observed concession (by either
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player). Denote by αk the weakly larger of the two announcements (i.e.
αk ≥ αl). Let tmaxkl be the largest such concession time for this subgame.
Since only rational players concede, and rational players concede over the
support [0, T0], it must be the case that tmaxkl ≤ T0. Inserting tmaxkl into the
expression for second stage behavior by rational players, given in equation 3,
results in:

1− ck,le−λklt
max
kl ≤ 1− πk

1− e−λlktmaxkl ≤ 1− πl
=⇒

πk ≤ e−λklt
max
k,l

πl ≤ e−λlkt
max
k,l

Since πi = zi
zi+z0µi

is bounded below by zi, for all i = 1, ..., K (the denominator

is bounded from above by zk + (1 − zk) × 1 = 1), this gives the following
bounds on zk and zl:

zk ≤ e−λklt
max
kl

zl ≤ e−λlkt
max
kl

While these bounds are not explicitly used in the main text, they are
referred to in section 3.3.4 of this online appendix, where they are used to
provide further evidence of excessive delays in the second stage.

1.7 Numerical Solution for a General Set of Behavioral
Types

For a given support for the equilibrium mixed strategy in first stage an-
nouncements, {αR, ..., αp, ..., αK}, using the system of equations defined in
1.2, including the simplifications contained in 1.5, it is possible to obtain
a numerical solution for µ. However, for a general set of behavioral types
C that include types that are non-aggressive, it is not possible to know in
advance what the support of the mixing strategy will be. Nonetheless, the
support µ is unique.

To see why the support must be unique, consider a bargaining game with
obstinate types (C, z). The maximum a rational type could ever expect to
earn from an announcement of α ∈ C is achieved if this rational type con-
cedes instantly to any announcement by irrational types that demand more
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than 1 − α, but at the same time is conceded to instantly by rational types
that demand more than 1−α. Denote this value by vmax (α). Suppose there
is an equilibrium in first-stage announcements of this bargaining game, µ, in
which at least one element α ∈ C that is not mimicked – i.e. µ (α) = 0. The
expected value to a rational type from deviating from µ and announcing α
instead is arbitrarily close to this vmax (α).13 For µ to be an equilibrium dis-
tribution of first-stage announcements, the expected value to rational types
from playing the equilibrium must be larger than this deviation payoff:

v (µ) ≥ vmax (α)

for all α ∈ C such that µ (α) = 0. Now suppose that there is a second
equilibrium distribution of first-stage announcements, µ′, that has a strictly
larger support. That is, there exists an α ∈ C such that µ (α) = 0 and
µ′ (α) > 0. Since there is a strictly positive probability of delay in second-
stages that follow from announcing α, the expected value to a rational type
from announcing this α must be strictly smaller than vmax (α). Since α is
part of the equilibrium mixed strategy, the expected value to rational players
of playing the equilibrium µ′ must also be strictly smaller than this bound:

v (µ′) < vmax (α)

for all α ∈ C such that µ′ (α) > 0. Putting these two inequalities together
gives

v (µ′) < v (µ)

That is, the equilibrium with the larger support has a higher expected payoff
for rational types. This is a contradiction to a known property of the game,
implicit in Abreu and Gul (2000) and explicitly stated in Sections 2 and 3
of Abreu and Sethi (2003), that equilibrium expected payoffs are uniquely
determined by the parameters (C, z).

In addition to uniqueness, the following features of the equilibrium are
used to develop an algorithm to find a full solution for µ:

• Aggressive types are always replicated in equilibrium.

13Consider any second stage after a rational type deviates from µ and announces α. If
the other player is also rational, then the other player concedes instantly. If the other
player is irrational, the deviating rational player waits an ε > 0, but arbitrarily small, for
this other player to reveal their irrationality by not conceding instantly and then concedes
themself.
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• If a type α is replicated in equilibrium, then all larger types are also
replicated.

• If a type α is compatible with all other types in C, i.e. α + αk ≤ 1
for all k = 1, ..., K, then this demand is never replicated by rational
players.

For step s = 0, ..., (p−m), where m denotes the smallest index such that αm
is incompatible with some other type:

1. Assume the support of µ is S = {αp−s, ..., αp, ..., αK}.

2. Using the assumption on the support, set up and solve the system
equations.

3. For each α ∈ {αm, ..., αp−s−1}, calculate the expected value to a rational
player from deviating by choosing α, assuming other rational players
continue to mix according to µ.

4. If there is no incentive to deviate to an α outside of the assumed set S,
end the algorithm. Otherwise, continue to the next step, which will add
the largest demand outside of S to the set S and repeat the process.

1.8 Numerical Examples

This subsection provides numerical examples of the equilibrium predictions
of the game. The examples are chosen with the experimental design in mind.
Accordingly, all types are now reported as integers demands out of a total
pie of 30. In the first example, all subjects are assumed to correspond to
a rational type of the model. The second example considers the possibility
that there may be 50-50 behavioral types in the subject population.

1.8.1 All subjects are Rational Types

Table 1 gives the equilibrium predictions for first stage behavior in the four
treatments U1, U2, R3 and R4 under the assumption that all subjects cor-
respond to rational types. Since this example assumes all subjects to be
rational, the C0 treatment is a game of complete information. This does not
have a unique equilibrium prediction. Consequently, it is omitted from the
tables. The first sets of columns gives the distribution over types implied by
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the addition of the computer players. The second set of columns gives the
equilibrium mixing strategy for rational players (i.e. subject announcements
in this example).

z µ
Treatment 8 12 15 18 20 8 12 15 18 20

All subjects rational

U1 0 0 0 0 13.3 0 0 0 0 100.0
U2 0 6.7 0 0 6.7 0 30.9 0 0 69.1
R3 0 0 6.7 6.7 6.7 0 0 48.2 30.2 21.5
R4 6.7 0 6.7 6.7 6.7 0 0 44.9 31.4 23.6

Table 1: Equilibrium prediction for first-stage behavior assuming all subjects
rational

Delay Prob. of Concession§

Median Upper Bounds Initial Interior

Treatment Subgame Median T0 αL αH αL αH

All subjects rational

U1 20-20 33.8 34.7 201.5 0 0 0.49 0.49
U2 12-20 0 5.0 17.9 0 0.75 0.15 0.08

20-20 34.2 34.7 230.1 0 0 0.49 0.49
R3 15-18 7.4 7.7 38.3 0 0 0.54 0.43

15-20 13.1 13.9 63.8 0 0 0.58 0.38
18-18 16.2 17.3 76.6 0 0 0.48 0.48
18-20 23.1 25.2 102.1 0 0 0.51 0.43
20-20 30.9 34.7 127.7 0 0 0.46 0.46

R4 15-18 6.5 7.7 35.6 0 0.07 0.50 0.40
15-20 11.1 13.9 59.4 0 0.09 0.52 0.35
18-18 16.1 17.3 74.7 0 0 0.47 0.47
18-20 21.7 25.2 99.7 0 0.03 0.49 0.41
20-20 30.9 34.7 128.1 0 0 0.46 0.46

Table 2: Equilibrium prediction for second-stage behavior as-
suming all subjects rational

§ Columns do not sum to one since there is a positive chance of no concession by either player.

Table 2 provides a summary of predicted second stage behavior for the
relevant second stage subgames in the treatments U1, U2, R3 and R4. Again
C0 is omitted. The first set of columns refers to the predicted delay behav-
ior, giving the median, the theoretical upper bound on the median and the
maximum possible delay. The last set of columns gives the probability of con-
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cession by the player making the lower (αL) and higher announcements (αH)
for both the case of initial concession (at time zero) and interior concession
(strictly after time zero).

1.8.2 Adding 50-50 Types to the Subject Population

This numerical example considers the possibility that the subject population
may contain 50-50 behavioral types. In the context of the experimental
design, this corresponds to the inclusion of 15-types in the subject population.
Three assumptions on the probability of being matched with a subject 15-
type are considered: 1

13
, 5

13
and 12

13
, referred to as scenario A12, A8 and A1,

respectively. In the first case, the probability of being matched to a subject
15-type is assumed to be such that, in U1 and U2, on average 1 out of the 13
other subjects (i.e. human rather than computer players) will be a 15-type.
Note that, since there are also two computer players in the pool of potential
matches, this gives a 1 out of 15 chance of being matched to a subject that
is a 15-type in treatments U1 and U2. This is chosen to be an example of a
small probability of being matched to a behavioral-type subject. The other
two cases are chosen to be examples of a medium and larger probability of
being matched to a behavioral-type subject. They correspond to assuming
in the control treatment that the probability of being a rational type, z0, is
8
13

and 1
13

. These numbers are comparable to scenarios B and C reported
in the experimental design section of the paper, which estimate z from the
control data assuming z0 is equal to 1

13
and 8

13
, respectively.14

The equilibrium predictions for first-stage behavior in the treatments U1,
U2, R3 and R4 are given in Table 3. Table 4 provides a summary of the
predicted second stage behavior for the relevant second stage subgames in
the treatments U1, U2, R3 and R4. The table focusses on the subgames
15-20 and 20-20, which can occur in all four treatments.

In addition to the fact that tables 1 through 4 provide numerical illus-
trations of the highlighted key equilibrium predictions, two further points
can be raised with regard to second-stage delay. The first, when z0 is not
too small, as in the case where all subjects rational and the A12 scenario,
the actual median is numerically very close to the upper bound. That is the

14Although the C0 is now a game of incomplete information, the predictions of the model
for this treatment are again excluded from the table. This is because the predictions are
immediate: the only behavioral type is the 15 type; thus all subjects, whether rational or
behavioral, will announce 15 and the game will end without moving to a second stage.
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z µ
Treatment 8 12 15 18 20 8 12 15 18 20

Scenario A1: z0 = 1
13

in C0

U1 0 0 80. 0 13.3 0 0 90.1 0 9.9
U2 0 6.7 80. 0 6.7 0 0 66.3 0 33.7
R3 0 0 80.5 6.7 6.7 0 0 89.3 5.9 4.9
R4 6.7 0 74.4 6.7 6.7 0 0 25.1 33.1 41.8

Scenario A8: z0 = 8
13

in C0

U1 0 0 33.3 0 13.3 0 0 81.4 0 18.6
U2 0 6.7 33.3 0 6.7 0 0 86.4 0 13.6
R3 0 0 37.4 6.7 6.7 0 0 80.9 10.6 8.4
R4 6.7 0 34.9 6.7 6.7 0 0 72.5 14.4 13.1

Scenario A12: z0 = 12
13

in C0 (scenario A in the paper)

U1 0 0 6.7 0 13.3 0 0 53.4 0 46.6
U2 0 6.7 6.7 0 6.7 0 0 69. 0 31.
R3 0 0 12.8 6.7 6.7 0 0 62.5 21.6 15.9
R4 6.7 0 12.3 6.7 6.7 0 0 57.4 23.8 18.8

Table 3: Equilibrium prediction for first-stage behavior
adding subject behavioral types

bound is reasonably tight when z0 is not too small. Secondly, as z0 gets small,
second-stage delay, conditional on eventual agreement, collapses. That is, if
the players are to agree, then it should happen almost instantly.
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Delay Prob. of Concession
Median Upper Bounds Initial Interior

Treatment Subgame Median T0 αL αH αL αH

Scenario A1: z0 = 1
13

in C0

U1 15-20 1.2 13.9 2.4 0 0 0.07 0.05
20-20 2.4 34.7 4.8 0 0 0.05 0.05

U2 15-20 0 13.9 1.8 0 0.22 0.04 0.03
20-20 12.4 34.7 29. 0 0 0.22 0.22

R3 15-20 1.1 13.9 2.2 0 0 0.06 0.04
20-20 2.2 34.7 4.4 0 0 0.04 0.04

R4 15-20 0 13.9 0.6 0 0.25 0.01 0.01
20-20 12.9 34.7 30.3 0 0 0.23 0.23

Scenario A8: z0 = 8
13

in C0

U1 15-20 9.4 13.9 27.8 0 0 0.45 0.3
20-20 20.4 34.7 55.6 0 0 0.34 0.34

U2 15-20 7.1 13.9 28.9 0 0.14 0.39 0.26
20-20 24.3 34.7 73.4 0 0 0.38 0.38

R3 15-20 8.6 13.9 24.2 0 0 0.42 0.28
20-20 18.5 34.7 48.3 0 0 0.31 0.31

R4 15-20 5.1 13.9 22.1 0 0.18 0.33 0.22
20-20 22.3 34.7 63.6 0 0 0.36 0.36

Scenario A12: z0 = 12
13

in C0 (scenario A in the paper)

U1 15-20 13.2 13.9 66.7 0 0 0.58 0.39
20-20 31.3 34.7 133.5 0 0 0.47 0.47

U2 15-20 12.1 13.9 74.3 0 0.06 0.55 0.37
20-20 32.5 34.7 155.1 0 0 0.48 0.48

R3 15-20 12.3 13.9 50.9 0 0 0.55 0.37
20-20 28.5 34.7 101.7 0 0 0.43 0.43

R4 15-20 9.9 13.9 47.5 0 0.11 0.48 0.32
20-20 29.1 34.7 106.8 0 0 0.44 0.44

Table 4: Equilibrium prediction for second-stage behavior
adding subject behavioral types
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2 Experimental Design

2.1 Sample instructions

2.1.1 C0 treatment

Welcome

You are about to participate in a session on decision-making, and you will
be paid for your participation in cash, privately at the end of the session.
What you earn depends partly on your decisions, partly on the decisions of
others, and partly on chance.

Please turn off pagers and cellular phones now. Please close any pro-
grams you may have open on the computer. The entire session will take place
through computer terminals, and all interaction between you and other ses-
sion participants will take place through the computers. Please do not talk
directly to or attempt to communicate with other participants during the
session.

We will start with a brief instruction period. During the instruction
period you will be given a description of the main features of the session and
will be shown how to use the computers. If you have any questions during
this period, raise your hand and your question will be answered so everyone
can hear.

Instructions

In this experiment you will be asked to make decisions in 15 periods. At the
beginning of each period you will be matched at random to another player.
In the room there are 16 players. During the period your task is to divide 30
points between yourself and the other player you are matched with.

Each period has up to two stages:

• First Stage: You place an announcement for the number of points that
you want for yourself out of the 30 (denote this by a). Simultaneously,
the other player will make an announcement for the number of points
they want for themselves (denote this by b).

– If the two announcements sum to 30 or less, then you will receive
your announcement plus half of what is left over (30 minus the
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sum of the two announcements) and the period will end. In other

words, you will receive a + (30−a−b)
2

points and the other player

receives b+ (30−a−b)
2

.

– If the two announcements sum to more than 30, then you move
on to the second stage.

• Second Stage: You can now either accept the other player’s announce-
ment or wait until they accept your announcement. Accepting their
announcement immediately means that you receive 30 − b points for
that period. However, the longer you wait the less your points are
worth. Approximately, points decrease at a rate of 1% per second.
More precisely, if you accept the other player’s announcement after t
seconds, you will receive (30− b) × (0.99)t and the other player will
receive b× (0.99)t. Figure 1 illustrates this.

 

If on the other hand, the other player accepts your offer after t seconds,
you will receive a× (0.99)t and the other player will receive (30− a)×
(0.99)t. Figure 2 illustrates this.
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Your computer screen will display the points you and the other player
would receive if you were to accept, or if they were to accept your
announcement at different points in time. Once either you or the other
player has accepted, or the value of the points have reached zero, the
period is over.

A few examples might help your understanding. These are not meant to
be realistic:

1. In the first stage, you announce 1.5 and the other player announces 3.5.
Since 1.5 + 3.5 = 5, which is smaller than 30, the period ends and you
receive 1.5 + (30 − 5)/2 = 14 points. If instead the other player had
announced 23.5, then you would have received 1.5 + (30 − 25)/2 = 4
points.

2. In the first stage, you announce 15 and the other player announces 23.
Since 15 + 23 = 38, which is greater than 30, you go to the second
stage. In the second stage, the other accepts your announcement after
1 second. You get 15 × (0.99)1 = 14.85 points. If instead, the other
player does not accept immediately and you accept after 10 seconds,
then you obtain (30− 23)× (0.99)10 = 6.33 points.
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3. In the first stage, you announce 25 and the other player announces 5.
Since 25 + 5 = 30, the period ends and you obtain 25 points.

As you can see there are many possibilities.
When every pair has finished this task, the next period begins. You will

be randomly re-assigned to a player in the next period. The task in the next
period is exactly the same as the one just described (but with the randomly
re-matched player). The session consists of 15 such periods.

Once the 15 periods have been completed, the total number of points you
have earned will be displayed (denote this by P ). This determines the odds
of winning a prize in your lottery. Your lottery has the following structure:

• The odds of winning are given by the number of points you earned
throughout the experiment divided by the total number of points avail-
able. Since there are 15 periods and there are 30 points available in each
period, the total number of points available is given by 15× 30 = 450
. Thus the odds of winning are P

450
.

• The prize is $20.

• That is, you have P
450

chance of winning the prize and 1 − P
450

chance
of receiving $0.

In summary, your earning from this session is comprised of a $15 partici-
pation fee and the outcome of your lottery. The probabilities associated with
your lottery depend on the number of points you have earned throughout the
session. You can earn either $0 or $20 from the lottery.

Are there any questions?

Summary

Before we start, let me remind you that:

• After a period is finished, you will be randomly re-matched to a player
for the next period.

• In each period, you and another player will make announcements to
divide 30 points between both of you. If the sum of your two an-
nouncements is less than 30 the period ends. If the sum of the two
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announcements is 30 or more you move to a second stage. In the sec-
ond stage, the points decrease in value until either you or the other
player accepts the announcement made by the other party, at which
point the period ends.

• At the end of the session, your earnings are determined by a lottery
with probabilities that depend on the number of points you have earned
throughout the experiment. You can earn either $0 or $20 from the
lottery. In addition you will receive a $15 show-up fee.

Good Luck.
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2.1.2 U1 treatment

Welcome

You are about to participate in a session on decision-making, and you will
be paid for your participation in cash, privately at the end of the session.
What you earn depends partly on your decisions, partly on the decisions of
others, and partly on chance.

Please turn off pagers and cellular phones now. Please close any pro-
grams you may have open on the computer. The entire session will take place
through computer terminals, and all interaction between you and other ses-
sion participants will take place through the computers. Please do not talk
directly to or attempt to communicate with other participants during the
session.

We will start with a brief instruction period. During the instruction
period you will be given a description of the main features of the session and
will be shown how to use the computers. If you have any questions during
this period, raise your hand and your question will be answered so everyone
can hear.

Instructions

In this experiment you will be asked to make decisions in 15 periods. At the
beginning of each period you will be matched at random to another player.
That player will be either another subject in the room or a computer player
(more on this later). In the room there are 14 human players and 2 computer
players. During the period your task is to divide 30 points between yourself
and the other player you are matched with.

Each period has up to two stages:

• First Stage: You place an announcement for the number of points that
you want for yourself out of the 30 (denote this by a). Simultaneously,
the other player will make an announcement for the number of points
they want for themselves (denote this by b).

– If the two announcements sum to 30 or less, then you will receive
your announcement plus half of what is left over (30 minus the
sum of the two announcements) and the period will end. In other
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words, you will receive a + (30−a−b)
2

points and the other player

receives b+ (30−a−b)
2

.

– If the two announcements sum to more than 30, then you move
on to the second stage.

• Second Stage: You can now either accept the other player’s announce-
ment or wait until they accept your announcement. Accepting their
announcement immediately means that you receive 30 − b points for
that period. However, the longer you wait the less your points are
worth. Approximately, points decrease at a rate of 1% per second.
More precisely, if you accept the other player’s announcement after t
seconds, you will receive (30− b) × (0.99)t and the other player will
receive b× (0.99)t. Figure 1 illustrates this.

 

If on the other hand, the other player accepts your offer after t seconds,
you will receive a× (0.99)t and the other player will receive (30− a)×
(0.99)t. Figure 2 illustrates this.
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Your computer screen will display the points you and the other player
would receive if you were to accept, or if they were to accept your
announcement at different points in time. Once either you or the other
player has accepted, or the value of the points have reached zero, the
period is over.

A few examples might help your understanding. These are not meant to
be realistic:

1. In the first stage, you announce 1.5 and the other player announces 3.5.
Since 1.5 + 3.5 = 5, which is smaller than 30, the period ends and you
receive 1.5 + (30 − 5)/2 = 14 points. If instead the other player had
announced 23.5, then you would have received 1.5 + (30 − 25)/2 = 4
points.

2. In the first stage, you announce 15 and the other player announces 23.
Since 15 + 23 = 38, which is greater than 30, you go to the second
stage. In the second stage, the other accepts your announcement after
1 second. You get 15 × (0.99)1 = 14.85 points. If instead, the other
player does not accept immediately and you accept after 10 seconds,
then you obtain (30− 23)× (0.99)10 = 6.33 points.
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3. In the first stage, you announce 25 and the other player announces 5.
Since 25 + 5 = 30, the period ends and you obtain 25 points.

As you can see there are many possibilities.
When every pair has finished this task, the next period begins. You will

be randomly re-assigned to a player in the next period. The task in the next
period is exactly the same as the one just described (but with the randomly
re-matched player). The session consists of 15 such periods.

Computer players do the same thing every period. In the first stage, the
computer player will always announce that they want 20 points. If the period
goes to the second stage (that is the announcements are incompatible), the
computer player will never accept your offer. At the beginning of each period,
you have a 2/15 chance of being matched to a computer player.

Once the 15 periods have been completed, the total number of points you
have earned will be displayed (denote this by P ). This determines the odds
of winning a prize in your lottery. Your lottery has the following structure:

• The odds of winning are given by the number of points you earned
throughout the experiment divided by the total number of points avail-
able. Since there are 15 periods and there are 30 points available in each
period, the total number of points available is given by 15× 30 = 450
. Thus the odds of winning are P

450
.

• The prize is $20.

• That is, you have P
450

chance of winning the prize and 1 − P
450

chance
of receiving $0.

In summary, your earning from this session is comprised of a $15 partici-
pation fee and the outcome of your lottery. The probabilities associated with
your lottery depend on the number of points you have earned throughout the
session. You can earn either $0 or $20 from the lottery.

Are there any questions?

Summary

Before we start, let me remind you that:
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• After a period is finished, you will be randomly re-matched to a player
for the next period.

• In each period, you and another player will make announcements to
divide 30 points between both of you. If the sum of your two an-
nouncements is less than 30 the period ends. If the sum of the two
announcements is 30 or more you move to a second stage. In the sec-
ond stage, the points decrease in value until either you or the other
player accepts the announcement made by the other party, at which
point the period ends.

• At the end of the session, your earnings are determined by a lottery
with probabilities that depend on the number of points you have earned
throughout the experiment. You can earn either $0 or $20 from the
lottery. In addition you will receive a $15 show-up fee.

Good Luck.
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2.1.3 R3 treatment

Welcome

You are about to participate in a session on decision-making, and you will
be paid for your participation in cash, privately at the end of the session.
What you earn depends partly on your decisions, partly on the decisions of
others, and partly on chance.

Please turn off pagers and cellular phones now. Please close any pro-
grams you may have open on the computer. The entire session will take place
through computer terminals, and all interaction between you and other ses-
sion participants will take place through the computers. Please do not talk
directly to or attempt to communicate with other participants during the
session.

We will start with a brief instruction period. During the instruction
period you will be given a description of the main features of the session and
will be shown how to use the computers. If you have any questions during
this period, raise your hand and your question will be answered so everyone
can hear.

Instructions

In this experiment you will be asked to make decisions in 15 periods. At the
beginning of each period you will be matched at random to another player.
That player will be either another subject in the room or a computer player
(more on this later). In the room there are 13 human players and 3 computer
players. During the period your task is to divide 30 points between yourself
and the other player you are matched with.

Each period has up to two stages:

• First Stage: You place an announcement for the number of points that
you want for yourself out of the 30 (denote this by a). This announce-
ment can either be 15, 18, or 20. These are the only three options that
are available to you. Simultaneously, the other player will make an an-
nouncement for the number of points they want for themselves (denote
this by b). He too can only ask for 15, 18, or 20.

– If the two announcements sum to 30 or less, then you will receive
your announcement and the period will end.
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– If the two announcements sum to more than 30, then you move
on to the second stage.

• Second Stage: You can now either accept the other player’s announce-
ment or wait until they accept your announcement. Accepting their
announcement immediately means that you receive 30 − b points for
that period. However, the longer you wait the less your points are
worth. Points decrease at a rate of approximately 1% per second.
More precisely, if you accept the other player’s announcement after t
seconds, you will receive (30− b) × (0.99)t and the other player will
receive b× (0.99)t. Figure 1 illustrates this.

 

If on the other hand, the other player accepts your offer after t seconds,
you will receive a× (0.99)t and the other player will receive (30− a)×
(0.99)t. Figure 2 illustrates this.
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Your computer screen will display the points you and the other player
would receive if you were to accept, or if they were to accept your
announcement at different points in time. Once either you or the other
player has accepted, or the value of the points have reached zero, the
period is over.

A few examples might help your understanding. These are not meant to
be realistic:

1. In the first stage, you announce 15 and the other player announces 15.
Since 15 + 15 = 30 the period ends and you receive 15 points.

2. In the first stage, you announce 15 and the other player announces 20.
Since 15 + 20 = 35, which is greater than 30, you go to the second
stage. In the second stage, the other accepts your announcement after
1 second. You get 15 × (0.99)1 = 14.85 points. If instead, the other
player does not accept immediately and you accept after 10 seconds,
then you obtain (30− 20)× (0.99)10 = 9.04 points.

3. In the first stage, you announce 20 and the other player announces 18.
Since 20 + 18 = 38, you would move on to the second stage...
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As you can see there are many possibilities.
When every pair has finished this task, the next period begins. You will

be randomly re-assigned to a player in the next period. The task in the next
period is exactly the same as the one just described (but with the randomly
re-matched player). The session consists of 15 such periods.

Computer players do the same thing every period. The first computer
player, “Computer I”, acts as follows: In the first stage, the “Computer
I” will always announce that they want 20 points. If the period goes to
the second stage (that is the announcements are incompatible), “Computer
I” will never accept your offer. The second computer player, “Computer
II”, acts as follows: In the first stage, “Computer II” will always announce
that they want 18 points. If the period goes to the second stage (that is
the announcements are incompatible), “Computer II” will never accept your
offer. The third computer player, “Computer III”, acts as follows: In the first
stage, “Computer III” will always announce that they want 15 points. If the
period goes to the second stage (that is the announcements are incompatible),
“Computer III” will never accept your offer. At the beginning of each period,
you have a 1

15
chance of being matched to “Computer I”, a 1

15
chance of being

matched to “Computer II”, and a 1
15

chance of being matched to “Computer
III”.

Once the 15 periods have been completed, the total number of points you
have earned will be displayed (denote this by P ). This determines the odds
of winning a prize in your lottery. Your lottery has the following structure:

• The odds of winning are given by the number of points you earned
throughout the experiment divided by the total number of points avail-
able. Since there are 15 periods and there are 30 points available in each
period, the total number of points available is given by 15× 30 = 450
. Thus the odds of winning are P

450
.

• The prize is $20.

• That is, you have P
450

chance of winning the prize and 1 − P
450

chance
of receiving $0.

In summary, your earning from this session is comprised of a $15 partici-
pation fee and the outcome of your lottery. The probabilities associated with
your lottery depend on the number of points you have earned throughout the
session. You can earn either $0 or $20 from the lottery.

42



Are there any questions?

Summary

Before we start, let me remind you that:

• After a period is finished, you will be randomly re-matched to a player
for the next period.

• In each period, you and another player will make announcements to
divide 30 points between both of you. If the sum of your two an-
nouncements is less than 30 the period ends. If the sum of the two
announcements is 30 or more you move to a second stage. In the sec-
ond stage, the points decrease in value until either you or the other
player accepts the announcement made by the other party, at which
point the period ends.

• You can make one of three possible announcements: 15, 18, and 20.

• At the end of the session, your earnings are determined by a lottery
with probabilities that depend on the number of points you have earned
throughout the experiment. You can earn either $0 or $20 from the
lottery. In addition you will receive a $15 show-up fee.

Good Luck.
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2.2 Screenshots

Stage 1

Stage 2
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2.3 Unrestricted Design Comparative Static:
Non-Estimated Rationality Scenarios

This subsection considers the comparative static predictions for the unre-
stricted design for some non-estimated rationality scenarios. Table 5 gives
the predictions for the assumption that all subjects correspond to a rational
player. The first set of columns gives the distribution over types, the second
set gives the resulting equilibrium mixing strategy for rational players. The
last set of columns gives the probability a subject will announce a particular
demand (that is unconditional on knowing if the subject is rational or not,
but excluding announcements made by computer players). Note, moving
from C0 to U1 results in all subjects mimicking the demand of the induced
behavioral type so that only demands of 20 are now observed.

z µ Prob. Observing§

Treatment z0 12 15 20 12 15 20 12 15 20

All Subjects Rational

C0 Assumed 100. 0 0 0 . . . . . .
U1 Predicted 86.7 0 0 13.3 0 0 100. 0. 0. 100.
U2 Predicted 86.7 6.7 0 66.7 30.9 0 69.1 30.9 0. 69.1

Table 5: Unrestricted design comparative static assuming all
subjects rational

§ Probability of observing an announcement, excluding those made by computer players. All values

in the table are probabilities represented as percentages (for reference, 1
15
≈ 6.7% and 2

15
≈

13.3%).

Given the saliency of the 50-50 norm, it is reasonable to consider the pos-
sibility that there might be 50-50 behavioral types in the subject population.
Table 6 gives the predictions for the case that includes this possibility – in
the experimental design, this corresponds to including a probability that a
subject might be a 15-type. Three values for this probability are considered,
which correspond to the numerical examples given in section 1.8.2: 1

13
, 5

13

and 12
13

, referred to as scenarios A1, A8 and A12, respectively. In the first,
the probability of being matched to a subject 15-type is assumed to be such
that, in U1 and U2, on average 1 out of the 13 other human subjects (i.e.
not a computer player) will be a 15-type. Since there are also two computer
players in the pool of potential matches, this would give a 1 out of 15 chance
of being matched to a subject that is a 15-type. This example assumes there
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is a small probability of being matched to a subject behavioral type. The
other two cases are chosen to be examples of a medium and a large prob-
ability of being matched to a subject behavioral type. They correspond to
assuming in the control treatment that the probability of being a rational
type, z0, is 8

13
and 1

13
. These numbers are comparable to scenarios B and C

reported in the experimental design section of the paper, which estimate z
from the control data assuming z0 is equal to 1

13
and 8

13
, respectively.

As Table 6 shows, the basic comparative static discussed in the experi-
mental design section of the paper – namely, an increase in announcements
of 20 in both U1 and U2, but no increase in announcements of 12 in U2 –
is predicted for all three scenarios that include the possibility of 50-50 types
subjects. Furthermore, the analysis shows that, as the probability of meeting
a 50-50 type subject is increased, announcements of 15 quickly dominate the
predictions for U1 and U2 – i.e. the probability of observing subjects an-
nouncing 15 approaches 1. The reason for this is two fold. First, increasing
the probability of 50-50 types subject decreases the probability of rational
types subject, and it is only rational types subject that would switch their
demands to 20. Second, as the probability of 50-50 types subject increases,
it is also generally the case that the probability a rational type subject mim-
ics the 50-50 demand also increases (that is µ15 generally tends to increase).
This is monotonically the case for U1, where in these scenarios all types are
aggressive; in U2, µ15 eventually decreases but only after the probability of
observing 15 announcements is already over 90%. Consequently, in these
scenarios a large move away from demands of 15 in the control to demands
of 20 in U1 and U2 can only be consistent with a small probability of being
matched to a 50-50 type subject.

2.4 Unrestricted Design Comparative Static:
Estimated Rationality Scenarios

This subsection considers general comparative static predictions for the un-
restricted design where the set of behavioral types and its distribution are
estimated using data from the control sessions. Two approaches are consid-
ered. The first uses only first-stage announcement data and is reported in
the main text; the second attempts to use both first and second-stage data.

46



z µ Prob. Observing§

Treatment z0 12 15 20 12 15 20 12 15 20

Scenario A1: z0 = 1
13

in C0

C0 Assumed 7.7 0 92.3 0 0 100 0 0 100 0
U1 Predicted 6.7 0 80. 13.3 0 90.1 9.9 0. 99.2 0.8
U2 Predicted 6.7 6.7 80. 6.7 0. 66.3 33.7 0. 97.4 2.6

Scenario A8: z0 = 8
13

in C0

C0 Assumed 61.5 0 38.5 0 0 100 0 0 100 0
U1 Predicted 53.3 0 33.3 13.3 0 81.4 18.6 0. 88.6 11.4
U2 Predicted 53.3 6.7 33.3 6.7 0. 86.4 13.6 0. 91.6 8.4

Scenario A12: z0 = 12
13

in C0 (scenario A in the paper)

C0 Assumed 92.3 0.0 7.7 0.0 0.0 100.0 0.0 0.0 100.0 0.0
U1 Predicted 80.0 0.0 6.7 13.3 0.0 53.4 46.6 0.0 57.0 43.0
U2 Predicted 80.0 6.7 6.7 6.7 0.0 69.0 31.0 0.0 71.4 28.6

Table 6: Unrestricted design comparative static adding behavioral
types subject

§ Probability of observing an announcement, excluding those made by computer players. All values in

the table are probabilities represented as percentages (for reference, 1
13
≈ 7.7% and 1

15
≈ 6.7%).

2.4.1 Estimation Strategy: Only Announcement Data

Using the numerical solution algorithm described above any distribution, z,
over a given set of behavioral types, C, can be mapped into an equilibrium
announcement strategy, µ (z). Consequently, for a series of n observed an-
nouncement pairs, {αi}2n

i=1, the likelihood of z (given C) is given by

L
(
z, C; {αi}2n

i=1

)
=

2n∏
i=1

I (αi ∈ C) (zi + z0µi (z))

where I (αi ∈ C) = 1 if αi ∈ C and 0 otherwise, and zi and µi (z) are the
elements of the vectors z and µ (z) that correspond to the type αi.

15

Since choosing an estimate of the set C such that there exists an observed
announcement that is not an element of C results in a zero likelihood for any
z over C, the estimated set of behavioral types is taken to be the union of
all observed announcements, Ĉ := ∪{αi|i = 1, ..., 2n}.16 Given this choice of

15Note that (zi + z0µi (z)) is the probability of observing an announcement αi without
knowledge of the rationality of the announcer.

16Note that adding elements to Ĉ that are not observed would result in these announce-
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Ĉ, the log likelihood is given by

lnL
(
z; {αi}2n

i=1

)
=

2n∑
i=1

ln (zi + z0µi (z))

Thus, the estimated z is given by

ẑ := arg max

{
2n∑
i=1

ln (zi + z0µi (z)) |z ∈ ∆|Ĉ|
}

where ∆|Ĉ| is the unit simplex in R|Ĉ|.
A limitation of this strategy is that the above function does not identify

the probability of being rational, z0. This is most simply illustrated by
considering any estimate ẑ that maximizes the above likelihood function and
results in ẑ0 = 1−

∑K
k=1 ẑk > 0. In this case, an alternative maximizer for the

log likelihood, z̃, can be constructed by setting z̃0 = 0 and z̃k = ẑk + ẑ0µ (ẑ).
Consequently, the maximization must be made conditional on a specified
value for z0. We will consider various values in our analysis.

2.4.2 Results: Only Announcement Data

Given the wide variety of announcements made under the unrestricted design,
and that a parameter needs to be estimated for each unique announcement
observed, only data from the last 10 periods was used. This eliminated de-
mands that were only made during the first five periods, when subjects may
have been unfamiliar with the game. Tables 7 and 8 give the comparative
static predictions for the unrestricted design that follow from using the above
procedure to estimate the distribution of types in the subject population. A
range of values for the constraint z0 is considered, namely z0 =

{
1
13
, 2

13
..., 12

13

}
.

z0 = 1
13
, 8

13
and 12

13
are used for scenarios B, C and D, respectively, in the

example rationality scenarios presented in the paper For all values of the
constraint z0, the basic comparative static discussed in the experimental de-
sign section of the paper is seen. In particular, an increase in announcements
of 20 in both U1 and U2 is predicted. However, as the constraint z0 gets
close to zero, the predicted increase in demands of 20 becomes very small for
both U1 and U2. This is solely driven by the fact that only rational subjects

ments having strictly positive probability of being observed, and some of the other elements
of Ĉ having strictly smaller probability of being observed.
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would switch their demand to 20. Not surprisingly, this means that a large
move away from demands of 15 in the control to demands of 20 in U1 and
U2 can only be consistent with a larger probability of being matched to a
50-50 type subject.17 For announcements of 12, there is no change predicted
for most values of z0. Rational types start making demands of 12 in U2 once
z0 is 10

13
, however there is only an appreciable increase if z0 is a least 11

13
.

2.4.3 Using First and Second Stage Data

We also considered a second approach that would use all the data from the
experiment; that is, both first and second stage data. Similar to Section 2.4.1,
the numerical solution algorithm can be used to calculate the equilibrium
announcement strategy, µ (z), for any distribution, z, over a given set of
behavioral types, C. The implied ex-post probabilities of being rational,
π (z), can then be used to calculate the equilibrium distribution of concession
by either player, without knowing whether they are rational or not, in any
second-stage subgame. Together these give the likelihood of an observation
{αi1, αi2, ti, di} for i = 1, ..., n, where ti is the second-stage delay and di the
identity of the player conceding should there have been a second stage in
which an agreement was eventually reached.

Again, the union of all observed announcements

Ĉ :=
{
∪
{
αi1|i = 1, ..., n

}}
∪
{
∪
{
αi2|i = 1, ..., n

}}
can be used as the estimate for the set of behavioral types. Given this choice

of Ĉ, an estimate for z is constructed by finding the vector ẑ ∈ ∆|Ĉ| that
maximizes the log likelihood of the control data, {αi1, αi2, ti, di}

n
i=1.

This approach also confirms the basic comparative static reported in the
main text. However, the results of this approach are implausible and hence
not reported here.18 The estimated probability of observing an announce-
ment of 15 is almost trivial at 0.1% (a numerical minimum set for proba-
bilities that are small, but strictly larger than zero). This is a consequence
of the impact of the excessive delays observed in the second-stage of the

17Note that, in contrast to the non-estimated rationality scenario with the possibility of
50-50 types subject, rational subjects do not mimic the 50-50 demand more often as the
probability of being matched to a rational type decreases.

18Results using data from the first three sessions of C0 are available upon request. All
the data and scripts to run this estimation are included in the supplementary materials of
the main text.
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z µ Prob. Observing§

Treatment z0 12 15 20 12 15 20 12 15 20

Scenario B1: z0 = 1
13

in C0 (scenario B in the paper)

C0 Estimated 7.7 1.1 30.4 9.7 0.0 9.9 23.2 1.1 31.2 11.5
U1 Predicted 6.7 0.9 26.4 21.7 0.0 8.9 41.3 1.1 31.1 12.9
U2 Predicted 6.7 7.6 26.4 15.1 0.0 0.0 38.9 1.1 30.4 12.7

Scenario B2: z0 = 2
13

in C0

C0 Estimated 15.4 1.1 26.7 8.8 0. 30.6 17.1 1.1 31.4 11.4
U1 Predicted 13.3 0.9 23.1 21. 0. 25.9 34. 1.1 30.7 14.
U2 Predicted 13.3 7.6 23.1 14.3 0. 20.4 30.4 1.1 29.8 13.5

Scenario B3: z0 = 3
13

in C0

C0 Estimated 23.1 1.1 22.8 7.9 0. 37.2 15.2 1.1 31.4 11.4
U1 Predicted 20. 0.9 19.8 20.2 0. 30.2 32.5 1.1 29.8 15.4
U2 Predicted 20. 7.6 19.8 13.5 0. 28.6 27.6 1.1 29.4 14.3

Scenario B4: z0 = 4
13

in C0

C0 Estimated 30.8 1.1 19.3 7.1 0. 39.2 14.1 1.1 31.4 11.4
U1 Predicted 26.7 0.9 16.8 19.5 0. 30.8 32.2 1.1 28.8 17.
U2 Predicted 26.7 7.6 16.8 12.8 0. 31.6 26.6 1.1 29.1 15.3

Scenario B5: z0 = 5
13

in C0

C0 Estimated 38.5 1.1 16.1 6.3 0. 39.8 13.4 1.1 31.4 11.4
U1 Predicted 33.3 0.9 13.9 18.8 0. 30.6 33.1 1.1 27.8 19.
U2 Predicted 33.3 7.6 13.9 12.1 0. 32.3 26.5 1.1 28.5 16.5

Scenario B6: z0 = 6
13

in C0

C0 Estimated 46.2 1.1 12.9 5.4 0. 40.1 13. 1.1 31.4 11.4
U1 Predicted 40. 0.9 11.2 18. 0. 29.3 34.8 1.1 26.4 21.5
U2 Predicted 40. 7.6 11.2 11.4 0. 32.2 27.3 1.1 27.8 18.

Scenario B7: z0 = 7
13

in C0

C0 Estimated 53.8 1.1 9.8 4.5 0. 40. 12.8 1.1 31.4 11.4
U1 Predicted 46.7 0.9 8.5 17.3 0. 27. 37.3 1.1 24.4 24.6
U2 Predicted 46.7 7.6 8.5 10.6 0. 31.4 29. 1.1 26.7 20.1

Scenario B8: z0 = 8
13

in C0 (scenario C in the paper)

C0 Estimated 61.5 1.1 7.1 3.6 0.0 39.4 12.7 1.1 31.4 11.4
U1 Predicted 53.3 0.9 6.2 16.5 0.0 24.2 40.9 1.1 22. 28.8
U2 Predicted 53.3 7.6 6.2 9.8 0.0 29.3 31.3 1.1 25.2 22.9

Table 7: Unrestricted design comparative static with types esti-
mated using announcement data only

§ Probability of observing an announcement, excluding those made by computer players. All values

in the table are probabilities represented as percentages (for reference, 1
13
≈ 7.7% and 1

15
≈ 6.7%).

The µ columns do not sum to one since {12, 15, 20} does not include the entire support of µ.
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z µ Prob. Observing§

Treatment z0 12 15 20 12 15 20 12 15 20

Scenario B9: z0 = 9
13

in C0

C0 Estimated 69.2 1.1 4.7 2.8 0. 38.6 12.5 1.1 31.4 11.4
U1 Predicted 60. 0.9 4.1 15.7 0.5 20.8 46.4 1.4 19.1 34.9
U2 Predicted 60. 7.6 4.1 9.1 0. 26.5 35.2 1.1 23. 27.1

Scenario B10: z0 = 10
13

in C0

C0 Estimated 76.9 1.1 2.5 1.8 0. 37.6 12.5 1.1 31.4 11.4
U1 Predicted 66.7 0.9 2.1 14.9 2.5 15.3 55.3 3. 14.2 44.3
U2 Predicted 66.7 7.6 2.1 8.2 0.8 21.7 42.8 1.7 19.2 34.7

Scenario B11: z0 = 11
13

in C0

C0 Estimated 84.6 1. 0.8 0.8 0. 36.5 12.6 1. 31.6 11.5
U1 Predicted 73.3 0.9 0.7 14.1 6.8 7.4 69.5 6.8 7. 59.7
U2 Predicted 73.3 7.5 0.7 7.4 13.6 10.8 53.9 12.5 9.9 46.5

Scenario B12: z0 = 12
13

in C0 (scenario D in the paper)

C0 Estimated 92.3 0.5 1.2 1.0 0.0 69.2 15.4 0.5 65.1 15.2
U1 Predicted 80.0 0.4 1.0 14.2 5.5 13.4 75.4 5.5 13.6 70.6
U2 Predicted 80.0 7.1 1.0 7.5 17.2 18.5 57.1 16.3 18.3 53.7

Table 8: Unrestricted design comparative static with types esti-
mated using announcement data only (cont.)

§ Probability of observing an announcement, excluding those made by computer players. All values in

the table are probabilities represented as percentages (for reference, 1
13
≈ 7.7% and 1

15
≈ 6.7%).

The µ columns do not sum to one since {12, 15, 20} does not include the entire support of µ.
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control sessions, in particular for subgames involving announcements of 15.
Table 9 illustrates the restrictions the observed maximum second-stage delay
places on z15 (see Section 1.6.2 for further details of these theoretical upper
bounds). Note that values of zero represent numbers that are only rounded
to zero after five decimal places (they are strictly larger than zero). Since
it is not subject to these strong implications of second-stage delay, we only
report estimates of the distribution over behavioral types from the strategy
using only announcement data in the paper.

Subgame Largest Observed Delay Implied Upper Bound on z15

15 16 207 0.00000
15 17.5 5.8 70.60990
15 18.5 25 34.25190
15 19 845 0.00000
15 20 920.6 0.00000
15 21 69.7 17.50820
15 22 468 0.00441
15 23 4662.5 0.00000
15 24 68.5 31.92860
15 28 35.4 66.46720

Table 9: Upper bounds on z15 implied by T0

z15 probabilities represented as percentages (rounded to 5 d.p).
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3 Results

This section provides further details of the data analysis reported and dis-
cussed in the results section of the main text. The section is organized to
match the order of the results section of the paper: summary statistics on
bargaining outcomes, announcement behavior, delay and concession behav-
ior.

3.1 Bargaining Outcomes

3.1.1 All Data Analysis

Table 10 replicates the “summary of bargaining outcomes” analysis presented
in Table 3 of the paper using all 15 periods of data. The overall conclusions
are unaffected by the inclusion of the first five periods: on average the differ-
ence between subject earnings across treatments was small and statistically
insignificant, with matches in the unrestricted design wasting more of the
pie. In all treatments, the majority of matches involved a second stage more
often than not.

Treatment
C0 U1 U2 R0 R3 R4

Mean points per period 13.7 13.8 14.0 13.9 14.4 14.5
Percent of second stages 69.2 63.5 71.2 70.3 72.8 71.5
Percent of pie wasted 8.7 8.2 6.7 7.0 4.2 3.3
... conditional on second stage 12.5 13.0 9.4 10.0 5.8 4.6

Table 10: Summary of bargaining outcomes - all data
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3.2 Announcement Behavior

3.2.1 Details of Statistical Tests

A Does the introduction of induced types change announcement
behavior? For each of the key announcements, 8, 10, 12, 15, 18 and
20, and for each of the unrestricted design treatment variations, U1
and U2, a dummy variable, indicating whether that announcement was
made or not, is regressed on a treatment indicator as well as a subject-
level random effect. To conduct inference, robust standard errors allow-
ing for arbitrary correlation between observations in the same session
are calculated. A t-test on the coefficient for the treatment indicator
(the baseline being the control) is used to test the null hypothesis that
there is no change in the proportion of a given announcement, versus
the two-sided alternate hypothesis. An analogous test is used for the
restricted design, except data from R0 is used as the reference group.

P1 Are payoffs for announcements of 18 lower than those for an-
nouncements of 15 or 20 in R3 and R4? Using data from an-
nouncements of 18 in the restricted design (i.e. treatments R3 and R4 ),
the payoff in points is regressed on a constant. Robust standard errors
are used, allowing for arbitrary correlation between observations in the
same session, as well as a subject-level random effect. A similar proce-
dure is used for announcements of 15 or 20. These regressions give an
estimate for the mean payoff in points, and an associated cluster-robust
estimate of the standard error, for announcing 18 and for announcing
either 15 or 20. A t-test is used to test the null hypothesis that these
means are the same, versus the one-sided alternative hypothesis that
the mean for announcing 15 or 20 is higher. The test has a p-value
< 0.001.

P2 Are payoffs for announcements of 20 larger than for announce-
ments of 15 in U1, U2, R3 and R4? Using data from announce-
ments of 20 in treatments U1, U2, R3 and R4, the payoff in points
is regressed on a constant as well as a subject-level random effect. To
conduct inference, robust standard errors allowing for arbitrary correla-
tion between observations in the same session are calculated. A similar
procedure is used for announcements of 15. These regressions give an
estimate for the mean payoff in points, and an associated cluster-robust
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estimate of the standard error, for announcing 20 and for announcing
15. A t-test is used to test the null hypothesis that these means are
the same, versus the one-sided alternative hypothesis that the mean for
announcing 20 is higher. The test has a p-value < 0.001.

P3 Are payoffs for concessionary announcements smaller than for
non-concessionary announcements? Using data from concession-
ary announcements (i.e. strictly smaller than 15) in all treatments ex-
cept R0 and R3, where concessionary announcements were not possible,
the payoff in points is regressed on a constant as well as a subject-level
random effect. To conduct inference, robust standard errors allow-
ing for arbitrary correlation between observations in the same session
are calculated. A similar procedure is used for non-concessionary an-
nouncements (i.e. greater than or equal to 15). These regressions give
an estimate for the mean payoff in points, and an associated cluster-
robust estimate of the standard error, for making a concessionary an-
nouncement and for making a non-concessionary announcement. A
t-test is used to test the null hypothesis that these means are the
same, versus the one-sided alternative hypothesis that the mean for
non-concessionary announcements is higher. The test has a p-value
< 0.001.

3.2.2 All Data Analysis

Figure 2 and Table 11 replicate the “subject announcements in the first stage”
and “summary of key announcements” analysis of Figure 1 and Table 4 from
the paper using all 15 periods of data. The pattern of subject announcements
in the unrestricted design, illustrated in Figure 2, is similar to that illustrated
in the corresponding figure in the paper. Similarly, Table 11 leads to the
same main conclusions as those drawn from its counterpart in the paper:
the introduction of an induced 20 type in the unrestricted design leads to a
significant increase in demands for 20; a complementary type emerges in the
U1 treatment; demands of 15 and 20 dominate the restricted design sessions
with much fewer announcements of 18 than 20, and, finally, demands of 8 in
R4 are infrequent.

Finally, table 12 replicates the “average payoffs in points” analysis from
the paper using all fifteen periods of data. Including the first five periods
does not change the main conclusion of this analysis: in the restricted design,
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Figure 2: Subject announcements in the unrestricted design - all data

Proportion of Announcements of
Treatment 8 10 12 15 18 20

C0 0.7 (6) 2.3 (20) 2.1 (18) 31.6 (275) 3.7 (32) 10.7 (93)
U1 0.8 (8) 9.8 (103) 1.8 (19) 21.6 (227) 1.6 (17) 27.0 (283)

p-value 0.852 0.000 0.738 0.224 0.047 0.033
U2 0.6 (6) 2.6 (27) 4.8 (50) 20.0 (210) 4.7 (49) 30.1 (316)

p-value 0.783 0.786 0.108 0.139 0.579 0.000

R0 . (.) . (.) . (.) 54.7 (574) 9.2 (97) 36.1 (379)
R3 . (.) . (.) . (.) 50.6 (493) 7.7 (75) 41.7 (407)

p-value . . . 0.522 0.448 0.314
R4 5.3 (48) . (.) . (.) 40.0 (360) 11.1 (100) 43.6 (392)

p-value . . . 0.003 0.481 0.165

Table 11: Summary of key announcements - all data
Number of observations are given in parentheses.
P-values give the probability of a type I error in a two-sided t-test of the difference between the control and the
treatment listed in the prior row (using robust standard errors clustered at the session level). See statistical test A of
section 3.2.1.
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Average Payoff to Announcements of
Treatment 8 10 12 15 18 20

C0 4.2 10.8 12.6 14.0 14.4 13.1
(2.85) (1.03) (0.95) (0.52) (1.02) (0.35)

U1 8.2 11.0 11.4 12.6 12.8 13.7
(0.25) (0.50) (1.07) (0.52) (0.63) (0.86)

U2 11.0 12.5 13.2 13.3 13.8 14.8
(1.64) (0.68) (0.46) (0.24) (0.36) (0.30)

R0 13.9 14.0 13.4
(0.21) (0.44) (0.44)

R3 12.8 11.5 14.4
(0.36) (0.55) (0.27)

R4 9.9 13.9 13.0 14.5
(0.28) (0.28) (0.39) (0.24)

Table 12: Average payoffs in points - all data
Parentheses give robust standard deviations, clustered at the session level.

demands of 18 lead on average to lower payoffs relative to demands of 15 and
20 (test P1 has p-value < 0.001); in sessions with induced types, announce-
ments of 20 lead on average to greater payoffs than 15 (test P2 has p-value
< 0.001); making concessionary demands leads on average to lower payoffs
(test P3 has p-value < 0.001), and there are few demands that on average
earn more than half the pie.

3.2.3 Non-Parametric Analysis on Session Averages

Table 13 replicates the “summary of key announcements” analysis from the
paper except using a non-parametric test on session averages.19 This leads to
the same main conclusions as those drawn from its counterpart in the paper:
the introduction of an induced 20 type in the unrestricted design leads to
a significant increase in demands for 20 (p-value 0.076 in U1 and 0.028 in
U2 ); a complementary type emerges in the U1 treatment (p-value 0.009);
demands of 15 and 20 dominate the restricted design sessions with much
fewer announcements of 18 than 20, and, finally, demands of 8 in R4 are
infrequent.

19Note that the reported p-values for all rank-sum and signed-rank tests are calculated
using an approximated distribution. For the highlighted results in the main text, the ap-
proximation does not result in a different categorization of significance – that is, whenever
the exact value is larger than the approximate value and it does not lie on the other side
of a 10%, 5% or 1% cut-off.
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Proportion of Announcements of
Treatment 8 10 12 15 18 20

C0 0.5 (3) 1.7 (10) 1.0 (6) 29.8 (173) 4.5 (26) 10.9 (63)
U1 0.7 (5) 9.3 (65) 2.0 (14) 20.7 (145) 1.4 (10) 25.1 (176)

p-value 0.572 0.009 0.595 0.347 0.209 0.076
U2 0.4 (3) 1.9 (13) 4.0 (28) 17.4 (122) 4.7 (33) 31.9 (223)

p-value 0.906 0.916 0.172 0.251 0.675 0.028

R0 . (.) . (.) . (.) 55.3 (387) 9.6 (67) 35.1 (246)
R3 . (.) . (.) . (.) 49.4 (321) 6.2 (40) 44.5 (289)

p-value . . . 0.465 0.172 0.347
R4 4.5 (27) . (.) . (.) 39.0 (234) 9.8 (59) 46.7 (280)

p-value . . . 0.076 0.917 0.346

Table 13: Summary of key announcements - non-parametric tests using
data from the last ten periods
Number of observations are given in parentheses.
P-values give the significance of the difference between the control and the treatment listed in the prior row using
a Wilcoxon rank-sum test on session averages.

Tests P1, P2 and P3 can also be replicated using a signed-rank test on
sessions averages. All three tests remaining statistically significant at the
usual levels: P1 has a p-value of 0.009, P2 a p-value < 0.001 and P3 a p-
value < 0.001. Thus, all the conclusions presented in the main text are robust
to carrying out the analysis with session-level, rather than individual-level,
data.

3.3 Delay in the Second Stage

3.3.1 Details of Statistical Tests

D1 Are observed average (mean) delays significantly above their
theoretical upper bounds? For each observation that leads to a

second stage, the ratio
(
t−mean upper bound

mean upper bound

)
is calculated, where t is the

time spent in the second stage. This ratio is regressed on a complete
set of treatment indicator variables. To conduct inference, robust stan-
dard errors allowing for arbitrary correlation between observations in
the same session are calculated. A Wald test is used to test the null
hypothesis that all the coefficients are jointly equal to zero. The null
hypothesis is rejected if the coefficients are significantly larger than
zero. The test has a p-value < 0.001.
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D2 Are observed delays significantly closer to their theoretical up-
per bounds in the restricted design than in the unrestricted
design? The same ratio, defined in D1 but only using sessions includ-
ing induced types, is regressed on a complete set of design indicator
variables. To conduct inference, robust standard errors allowing for
arbitrary correlation between observations in the same session are cal-
culated. A Wald test is used to test the null hypothesis that the two
coefficients are equal against the two-sided alternate hypothesis. The
test has a p-value of 0.014. The test is also carried out on a subset of
the unrestricted design data referred to as explicit subgames. These
only include announcement combinations 15-20 and 20-20 from treat-
ment U1, and announcement combinations 12-20, 15-20 and 20-20 from
treatment U2. The test, using only the explicit subgames from the un-
restricted design, has a p-value of 0.109. Finally, an analogous test is
run comparing delay in R0 to delay in both R3 and R4, and has a
p-value < 0.001.

3.3.2 All Data Analysis

Table 14 replicates the “second-stage delay” analysis from the paper for all
15 periods of data. Including the first five periods of data does not change
the main conclusions of this analysis. Mean delay values are generally above
their respective upper bounds, with test D1 having a p-value of 0.000 for all
treatments. The move from the unrestricted to restricted design continues
to result in overall delay statistics that are closer to the upper bound: the
average ratio of mean delay to upper bound is 5.53 in the unrestricted design
and 4.53 in the restricted design, and test D2 has a p-value of 0.019; re-
stricting attention to explicit subgames in the unrestricted design continues
to result in a more favorable comparison with the restricted design (test D2
using this sub-sample has a p-value of 0.111), while there continues to be a
significant difference between treatments with explicit types in the restricted
design (p-value < 0.001).

3.3.3 Non-Parametric Analysis on Session Averages

Tests D1 and D2 above can be carried out using non-parametric tests on
session averages. For the D1 test, a sign-test is used to test whether the
ratio is different from zero, and has a p-value < 0.001. For the D2 tests, a
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Subgame§ Obs Delay
Treatment αL αH Freq % Mean Bound Ratio§§

C0 All 259 204.2 4.73
15 17 16 6.2 32.8 7.1
15 20 25 9.7 117.9 20.0

U1 All 234 192.6 6.06
15 20 51 21.8 74.6 20.0
20 20 49 20.9 313.5 50.0

U2 All 260 104.1 5.85
15 20 46 17.7 79.4 20.0
20 20 38 14.6 77.4 50.0

R0 All 369 139.2 5.16
15 18 56 15.2 49.9 11.1
15 20 206 55.8 99.9 20.0
18 20 39 10.6 199.2 36.4
20 20 67 18.2 297.4 50.0

R3 All 283 63.3 4.74
15 18 22 7.8 49.7 11.1
15 20 164 58.0 49.2 20.0
18 20 25 8.8 112.5 36.4
20 20 70 24.7 84.3 50.0

R4 All 233 49.6 3.28
15 18 27 11.6 23.5 11.1
15 20 109 46.8 23.3 20.0
18 20 25 10.7 69.6 36.4
20 20 64 27.5 98.7 50.0

Table 14: Second-stage delay - all data
§ Only subgames with at least 10 observations reported.
§§ Weighted mean of median delay to upper bound.
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rank-sum test is used to compare treatments and designs. For all sessions
with induced types, this has a p-value of 0.016; the subsample that only uses
explicit subgames has a p-value of 0.650. The test that compares R0 to both
R3 and R4 has a p-value of 0.003. Thus, the conclusions presented in the
main text are robust to carrying out the analysis with session-level, rather
than individual-level, data.
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3.3.4 Further Evidence of Excessive Delay

As shown in section 1.6.1, the longest delay observed in a given subgame has
implications for the distribution over behavioral types, since it is an estimate
for T0. Table 15 shows the upper bounds on z that are implied by observed
delay for subgames with at least 8 observations, for the four treatments that
include induced types. This analysis provides further evidence of excessive
delay, since many of the implied upper bounds are smaller than the proba-
bility of being matched to the induced types for that treatment.20 Since this
latter probability is a lower bound, the observed delays in these subgames
are too long to be consistent with this quantitative prediction of the model.

Subgame Obs Delay Upper Bounds§

αL αH Freq % Tmax zL zH

U1

15 20 32 10.5 437.0 0.0 0.0
20 20 24 7.9 1,713.0 0.0 0.0

U2

15 20 29 9.6 697.7 0.0 0.0
20 20 27 8.9 306.6 4.7 4.7

R3

15 20 119 45.9 411.5 0.0 0.0
18 20 16 6.2 572.5 0.0 0.1
20 20 49 18.9 356.2 2.8 2.8

R4

15 18 15 6.9 160.9 0.0 0.2
15 20 73 33.5 201.4 0.2 1.8
18 20 17 7.8 384.6 0.3 0.8
20 20 51 23.4 691.8 0.1 0.1

Table 15: Further evidence of excess delay
in the second stage
Only subgames with at least 8 observations reported.
§ Upper bounds on z (in %) implied by Tmax.

20Note that 1
15 ≈ 6.7%.
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3.4 Concession in the Second Stage

3.4.1 Details of Statistical Tests

C1 Is interior concession by the lower announcer significantly more
likely than by the higher announcer? To address this question,
data from asymmetric subgames that lead to a second stage and ended
with interior concession is used. An indicator variable, indicating
whether the lower announcer conceded, is regressed on a complete set
of treatment indicator variables. To conduct inference, robust stan-
dard errors allowing for arbitrary correlation between observations in
the same session are calculated. Wald tests are used to test the null
hypotheses that the coefficient for the treatment is equal to 0.5.21 The
null hypothesis is rejected if the coefficient is significantly larger. The
tests have p-values of 0.999, 0.003 and 0.364, for treatments C0, U1
and U2, respectively. For the join test for treatments U1 and U2, the
p-value is 0.582. A similar test, except using an indicator for whether
the treatment included induced types or not, is used to compare the
outcomes from U1 and U2 with those from C0, and has a p-value of
0.010. The test is also run on a subset of the unrestricted design data,
referred to as explicit subgames. These only include announcement
combinations 15-20 from treatment U1, and announcement combina-
tions 12-20 and 15-20 from treatment U2. No data from the control
treatment is included. The test, using only the explicit subgames from
the unrestricted design, has a p-value of 0.004. Analogous tests are also
run for the restricted design. The p-value for the restricted design as a
whole is 0.129, while the comparison of R0 versus R3 and R4 is 0.008.

C2 Is initial concession significantly different in R4 compared to
R3? To address this question, data from asymmetric subgames in the
restricted design that lead to a second stage and ended with initial
concession is used. A dummy variable, indicating whether the higher
announcer conceded, is regressed on a complete set of treatment indi-
cator variables. To conduct inference, robust standard errors allowing
for arbitrary correlation between observations in the same session are
calculated. A Wald test is used to test the null hypothesis that the

21Note that only data for interior concession is included. Thus, the proportion of lower
announcers conceding being larger than 0.5 is equivalent to this proportion being larger
than the corresponding proportion for higher announcers.
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coefficient for R4 is equal to the coefficient for R3. The test has a
p-value of 0.001.

3.4.2 All Data Analysis

Figure 3 replicates the “concession behavior in the asymmetric subgames”
analysis of Figure 2 from the paper using all 15 periods of data. Including
the first five periods of data does not change the main conclusions of this
analysis. For the unrestricted design, overall interior concession does not
appear consistent with the predicted pattern. Test C1 has p-values 0.980,
0.010 and 0.897, for treatments C0, U1 and U2, while the joint test for the
latter two is 0.582, which is significant improvement on C0 (p-value 0.010).
Again, the explicit subgames in U1 and U2 are consistent with the predicted
pattern (p-value 0.000). For all three treatments there is little evidence for
initial concession.

For the restricted design, interior concession in R3 and R4 is more often
by the lower announcer, as predicted, but the opposite is true in R0 (test
C1 on all restricted sessions has p-value 0.150, while the comparison between
R0 with R3 and R4 has p-value 0.062). In R4 there is evidence of initial
concession by the higher announcer, while there is no such evidence in R3,
as is predicted; test C2 has a p-value < 0.001.

3.4.3 Non-Parametric Analysis on Session Averages

Tests C1 and C2 can be carried out using non-parametric tests on session
averages. For test C1, a sign-test is used to test whether the interior con-
cession by the lower announcer is equal to that by the higher announcer and
has p-values 0.063, 0.375 and 0.375 for treatments C0, U1 and U2, respec-
tively. For the join test for treatments U1 and U2, the p-value is 1.000. A
ranksum test is used to compare the outcomes from U1 and U2 with those
from C0, and has a p-value of 0.037. Analogous tests are also run for the
restricted design. The p-value for the restricted design as a whole is 1.000,
while the comparison of R0 versus R3 and R4 is 0.007. Thus, all the conclu-
sions presented in the main text are robust to carrying out the analysis with
session-level, rather than individual-level, data. For the C2 test, a rank-sum
test is used to compare initial concession in R3 with R4, but has a p-value
of 0.332.
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3.4.4 Robustness Check on the Threshold Used to Define Initial
Concession

Figures 4, 5 and 6 replicate the “concession behavior in the asymmetric
subgames” analysis of Figure 2 from the paper using different thresholds for
defining initial concession. The thresholds are 1 second, 5 seconds and 10
seconds, respectively. Note that this analysis only uses data from the last 10
periods. Changing the initial concession threshold does not change the main
conclusions of this analysis. For the unrestricted design, interior concession
in the control treatment is still mostly made by the higher announcer, and in
the U1 and U2 treatments the 15-20 subgames are more consistent with the
predicted pattern. For all three treatments, there is more evidence for initial
concession when the threshold is set to 5 or 10, as would be expected, but
with the sole exception of 15-20 subgame in U2 using the 5 second threshold,
the predicted pattern for initial/interior concession does not emerge (that is
higher announcer concession initially followed by lower announcer concession
in the interior).

For the restricted design, interior concession in both the R3 and R4
is more likely by the lower announcer, as predicted, although concession
by the higher announcer eventually catches up in R3 if the threshold is
set large enough. This evidence is in stark contrast to R0 where interior
concession is always by the higher announcer. Decreasing the threshold to 1
second eliminates the evidence for initial concession in R4, while increasing
the threshold to 5 or 10 seconds increases initial concession for all treatments,
as would be expected. However, when there is evidence for initial concession,
it is more likely to be by the higher announcer in R4 than in R3.
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4 Relaxing the Behavior of Obstinate Types

This section provides a simple extension of the stylized model of Abreu and
Gul (2000) that allows for strategically unresponsive types that are more
flexible in their second-stage behavior. In the experiment, the computer
types were programmed to be inflexible in the manner assumed in Abreu and
Gul (2000). However, should a rational player believe that they might be
matched with subjects that are strategically unresponsive – for example, the
subject population could contain fair, 50-50 behavioral types – then it seems
unreasonable to suppose that such subjects would be so inflexible as to never
concede no matter how much the pie has already shrunk. In this sense, this
modification is in the spirit of the perturbation of the standard alternating-
offers bargaining given in Binmore and Swierzbinski (2006), and is consistent
with the observation from the experiments that outright disagreement – or
something approximating this – is not observed in matches containing two
subject players.

First, consider the situation where obstinate types can concede in the con-
cession game, but this happens with a given, constant hazard rate that does
not differ across subgames. The hazard rate is assumed to be small so that
the nature of equilibrium behavior is not fundamentally changed. In partic-
ular, the hazard rate is small enough so that there is no possible subgame
– with a strictly positive probability that the other player is an obstinate
type – where a rational-type player would find it optimal to never concede,
waiting instead for eventual concession by a possibly obstinate type.22 This
minimal adjustment to the behavior of obstinate types ensures that these
types maintain their commitment to a bargaining norm and their lack of
strategic responsiveness, while allowing them to exhibit less than complete
inflexibility in the concession game.

The result is that rational players, in equilibrium, concede at a slower
rate during the interior of the concession stage, exactly compensating for
the introduced probability that an obstinate type might themselves con-
cede. However, rational players that make higher demands will generally
find themselves in an even weaker position in subgames in which they meet

22The motivation for relaxing the complete-inflexibility-of-obstinate-types assumption is
that it seems unreasonable to suppose that a player would under no circumstances concede
in a concession game. We rule out situations where the probability that an obstinate type
might concede is large enough that rational types would choose to engage in exactly the
behavior considered to be unreasonable.
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incompatible demands that ask for less than them. As a consequence, the
predictions for overall delay and mimicking of more demanding types, when
compared to the standard case, will be ambiguous.

However, it seems most likely, and is a consistent interpretation of our
results and prior experiments, that the most common behavioral type among
subjects is the 50-50 type. If we consider the intermediate case where there
are, in addition to the obstinate types of the Abreu and Gul (2000) variety
implemented using computer players, also the possibility of subjects being 50-
50 obstinate types, but of the less inflexible variety, then the results align with
what is observed in the experiment. The possibility that the 50-50 obstinate
type might concede reduces the “weakness” against the 50-50 demand of
rational types that make larger demands. Consequently, the probability of
an initial concession is reduced, while the probability of mimicking more
demanding types is increased. In summary, this intermediate case results in
both greater delay, conditional on eventual agreement, and an increase in
more demanding announcements.

The details of the set-up with the modified obstinate types and subsequent
equilibrium behavior is detailed in the next subsection. A separate subsection
compares the two extreme cases – namely the only-modified-types case and
the standard-types case. A third subsection considers the intermediate case
in which 50-50 obstinate types are of the modified form, whilst the others
are of the standard form.

4.1 Set Up and Equilibrium Behavior - Modified Types
Only

Two agents bargain over a pie of size one in two stages exactly as described in
section 1.1. With probability zk, a player is an αk−type that always demands
αk ∈ (0, 1) in the first stage. The set of behavioral types is finite and denoted
by C := {α1, . . . , αK}, with αi < αi+1, for i = 1, ..., K − 1, and αK ≥ 1

2
. If

such a behavioral type finds themselves in the second-stage concession game
then, irrespective of the demand of the other player, they concede at time t
with probability given by the cumulative distribution functions

Fγ (t) = 1− e−γ·t

where γ > 0 is such that

γ ≤ λLH :=
r (1− αL)

(αL + αH − 1)
(5)
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for any αL, αH ∈ C such that αL ≤ αH and αL + αH > 1.
The assumptions underlying the inequalities in equation 5 ensure that

the probability an obstinate type would concede is small enough so that, in
equilibrium, a rational player would concede instantly rather than wait, once
it was evident that their opponent was an obstinate type.23 It is no surprise
that having obstinate types concede at a slower rate than the hazard rate
λLH is sufficient: the latter is calculated as exactly the rate that would make
a rational types indifferent between conceding or not.

As in the standard case, a key property of the equilibrium is that ratio-
nal players only choose demands that mimic some behavioral type. Conse-
quently, players can be identified by the element of C that they announced
in the first stage. In a symmetric equilibrium, define µ′k to be the probability
that a rational player announces demand αk. Given this equilibrium, the
probability that a player is irrational given an announcement αk is given by

π′k =
zk

zk + z0µ′k
(6)

Now, suppose a rational player announced αk and faces an opponent who
has announced αl, where αl + αk > 1 and µ′l > 0. The unique equilibrium
play in this incomplete information war of attrition game is given by a mixed
strategy over the concession. The αk player concedes with a constant hazard
rate, λ′kl, given by

λ′kl =
r (1− αk)
αk + αl − 1

− π′kγ (7)

over the interval [0, T ′0] , where T ′0 = min (T ′kl, T
′
lk) and T ′kl =

− ln(π′k)
λ′kl

and

T ′lk =
− ln(π′l)
λ′lk

.24 The notational convention of section 1 is maintained so that

23It is only necessary to consider the case of rational players that demand more than
their opponent since, in equilibrium, these rational types concede at a slower rate than the
rational types that made the smaller demand. Consequently, the only case that needs to
be ruled out is the one where the higher-demand rational players do not concede initially,
reach the point in the concession game where almost surely a lower-demand rational type
would have conceded and yet still prefer to wait it out for the obstinate type to concede.
Equation 5 rules this scenario out for all subgames that could happen with strictly positive
probability in equilibrium.

24So long as it remains possible that their opponent is a rational-type, a rational player
who announced αk is indifferent between conceding and not conceding at a time t if
r (1− αl) = [αk − (1− αl)]λlk, where λlk is the hazard rate for concession by the opponent

72



the distribution of concession by rational αk-announcers is given by
F̂ ′kl

1−π′k
,

where

F̂ ′kl (t) =

{
1− c′kle−λ

′
klt, for t ∈ [0, T ′0]

1− π′k, for t > T ′0
(8)

and c′kl = π′ke
λ′klT

′
0 and (1− c′kl) (1− c′lk) = 0. The notation is maintained to

facilitate comparison, despite the presence of π′k in the equation 7 making
the notation less convenient.

As in the standard case, the value of T ′kl is a measure of the αk rational
player’s “strategic” weakness when facing an αl player: if T ′kl > T ′lk, then the
αk-player will concede at time t = 0 with strictly positive probability (mass),
given by q′kl := (1− c′kl). In a symmetric equilibrium, it will always be the
rational player that made the higher announcement that will concede with
positive probability at time t = 0, if at all.

4.2 Comparison: Modified Versus Standard Types

This subsection considers how equilibrium behavior by rational types differs
in the modified case to the standard case when the same set of parameters are
applied. The primary concern will be whether, in a subgame following an-
nouncements αL and αH , in which αH ≥ αL and αL+αH > 1, the “weakness”
of a rational αH-announcer is more or less in the modified case compared to
the standard case. Intuitively, weakness is the amount by which rational
types overshoot their rational counterparts, who made a less demanding of-
fer, by needing to concede at a slower rate.25 This overshoot determines the
amount of initial concession that is then necessary; the larger the overshoot,
the more initial concession needed. Noting that the equation for T ′kl implies
π′H = e−λ

′
HLT

′
HL and plugging this into the expression for c′HL gives

q′HL := 1− c′HL = 1− eλ′HL(T ′LH−T ′HL)

Thus, a player’s weakness in a subgame is given by λ′HL (T ′LH − T ′HL). The
closer to zero this is, the closer c′HL is to one and the smaller the initial
concession is. If the modified-types case improves the position of the higher

unconditional on knowing whether the opponent is rational or not. In this modified setting
λlk is a convex combination of λ′lk and γ, with weights (1− π′k) and π′k, respectively.

25Note that this is “converted” into probability units by multiplying by the hazard rate
that the higher announcer concedes at.
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announcer, then it should be that

λ′HL (T ′LH − T ′HL) < λHL (TLH − THL)

⇐⇒

ln (π′H)− ln (π′L)
λ′HL
λ′LH

> ln (πH)− ln (πL)
λHL
λLH

Consider the following comparative static: starting from γ = 0 (i.e. the
standard-type case) what is the effect of marginally increasing γ on second-

stage behavior? Plugging in µ′ = µ results in comparing
λ′HL
λ′LH

to λHL
λLH

. If the

former is larger than the latter, then marginally increasing γ results in a less
weak position for the higher demander. In words, we are asking whether there
is a reduction in the proportional difference between the concession rates of
the higher and lower-announcers. Re-arranging and using the definition of
λ′kl gives

λ′HL
λ′LH

>
λHL
λLH

⇐⇒
λ′HL
λHL

>
λ′LH
λLH⇐⇒

λHL − π′Hγ
λ′Hl

>
λLH − π′Lγ

λLH
⇐⇒

π′H
π′L

<
λHL
λLH

=
1− αH
1− αL

< 1

However, in general this inequality cannot be expected to hold. For

example, when all types are aggressive, π′H = (π′L)

(
1−αH
1−αL

)
, meaning that

π′H > π′L.26 While equilibrium behavior in the more general setting, which
includes non-aggressive types, does not exclude the possibility that π′H ≤ π′L,
the difference would need to be large enough to overcome the fact that λHL is
already smaller than λLH – and thus subtracting a fixed number has a larger
proportional effect on λHL than λLH .

26If all types are aggressive there is no initial concession. Instead, the proportion by
which a demand is chosen must be adjusted so that THL = TLH . Hence, just ensuring
second-stage behavior is in equilibrium provides more structure on how π′H and π′L must
be related.
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In summary, moving to modified types will generally lead to rational
players making higher demands finding themselves in an even weaker position
in subgames in which they meet a lower incompatible demand. If this is the
case, despite hazard rates being slower in the modified case, initial concession
will be more likely, making the overall impact on delay in a given subgame
ambiguous. Furthermore, more demanding announcements will be made less
often.

4.3 An Intermediate Case

This subsection considers an intermediate case where all types are of the
standard, completely inflexible variety except for the 50-50 obstinate type,
which might also be of the modified form. This assumption is somewhat
tailored to our experimental design: In addition to the obstinate types in-
duced using the computer players, we include the possibility that subjects
might themselves be a 50-50 obstinate type. While the computer types are
programmed to be completely inflexible, if a subject is an obstinate type,
then they are of the less inflexible variety.

Now consider second-stage concession games that involve one player mak-
ing the 50-50 demand, denoted by αL, and another player making a strictly
larger demand, denoted αH . As detailed in subsection 4.1, a rational αL
announcer will need to concede at a slower rate to take into account the fact
that the obstinate type they are mimicking might now concede. However,
this is not the case for the rational αH announcer. For them, the required
rate of concession is unchanged. It is clear this will reduce the weakness of
the αH announcer: T ′LH > TLH , while T ′HL = THL, if it were the case that
µ′ = µ. As a consequence, the new equilibrium would require a smaller prob-
ability of initial concession and a smaller probability that the αH announcer
is irrational, while the probability of the αL announcer being irrational must
increase.

Since the 50− 50 announcers are now conceding at a slower rate and are
also being conceded to initially less often, there will be more delay, condi-
tional on eventual agreement, in second-stages involving a 50-50 announce-
ment. Finally, to ensure that the ex-post probability of a higher announcer
being irrational decreases and the ex-post probability of the 50-50 announcer
being irrational increases, rational types must choose the higher announce-
ments more often and the 50-50 announcement less often.
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4.4 Other Approaches to Extending the Theory

The above approach to extending the theory seeks a minimal adjustment to
the behavior of the obstinate, “irrational”, types in order to accommodate
the observed deviations from the baseline theory. The intermediate case that
results from this exercise also fits nicely with the features of the experimental
design. In particular, while the computer players are programmed to never
concede in the second-stage, it is more difficult for a obstinate type subject
to achieve this, since they must actually wait until the other player has
conceded. Furthermore, the evidence from the control treatments (C0 and
R0 ) suggest that demands for strictly more than half the pie, when there are
no induced types that make such a demand, prove to be non-credible when
faced with an equal splits demand; we observe the player making the larger
demand making interior concession more often, something that should not
happen if the demands were credible. This evidence supports the assumption
that obstinate types from the subject population are of the 50-50 variety.

However, adjusting the behavior of the obstinate types is not the only
direction in which the theory can be extended. An alternative would be to
adjust the preferences of the rational types, for example to incorporate social
preferences or fairness goals. The analysis conducted above is informative for
how such an extension might work. Assuming the changes in preferences do
not drastically alter the behavior of rational agents in the second stage, the
following two points should be noted:

• Any change that results in the rational player who announced the lower
of the two demands, which subsequently enter a second-stage, conced-
ing at a slower rate, while not changing the rate at which the higher-
announcer concedes, will result in an unambiguous increase in delay in
this subgame. The difficulty when the concession rates of both decrease
is that initial concession by the higher-announcer might also increase,
resulting in an ambiguous effect on delay in the subgame. This was
also seen with the only-modified-types comparison of subsection 4.2.

• Any change that reduces the “weakness” of the rational player that
makes the higher announcement – i.e., less initial concessions by the
higher-announcer – will result in more equilibrium announcements of
this higher type. A slower concession rate by the lower-announcer,
without changing the higher-announcer’s concession rate, will reduce
the weakness of the higher-announcer.
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In summary, to be consistent with what is observed in the experiment, the
small adjustment to the baseline model should result in longer delays in a
given subgame and a greater probability of a rational type mimicking the
more demanding type. This can be achieved, without depending on the
specifics of the parameters, by adjusting the baseline model in a way that
slows down the concession rate for only rational players who make the lower
of two incompatible demands.

As an illustration, consider changing the preferences of rational types for
the outcomes of the concession stage, while maintaining the usual exponen-
tial discounting. Suppose these preferences can be represented by a utility
function. Ignoring the time discount, let U (c, αi, αj) denote the utility to
a rational player who announced αi and conceded in the second stage to
a player that announced αj (with αi + αj > 1); let U (nc, αi, αj) denote
the utility to same player except in the case the other player concedes, and
U(disagree) the utility from disagreement. In the baseline model these would
be (1− αj), αi and 0, respectively.

To ensure that these changes do not drastically change the equilibrium
behavior of rational types in the second stage, it is sufficient to assume:

• The (non-discounted) utility function U does not depend on time.

• U is common knowledge amongst rational agents; rational players com-
monly know each other’s preferences up to the uncertainty about whether
the other is an obstinate type or not.27

• The rational players’ preference ordering for the outcomes is unchanged;
That is,

U (nc, αi, αj) > U (c, αi, αj) > U(disagree)

27This assumption is clearly strong, and thus the analysis should be seen as a first pass
at what might be possible with changing rational players’ preferences. Aside from sim-
plifying the analysis, the assumption mimics the implicit assumption in the modification
of Subsections 4.1 through 4.3 that rational types commonly know the exogenous rate at
which the modified obstinate types will concede, and thus provides a better comparison
between the approaches. The assumption is easier to justify in the examples below, which
consider a simple utility boost or cost to various actions, than for more general utility
specifications that allow for a broad spectrum of trade-offs between self-regarding motives
and other goals as in, for example, the models of Fehr and Schmidt (1999), Bolton and
Ockenfels (2000) and Charness and Rabin (2002).
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for all subgames that lead to a second stage.28

Given this, the structure of equilibrium behavior in a given second stage
is very similar to the baseline model. Rational players will adopt a mixed-
strategy over the time to concession that seeks to keep the other rational-type
player indifferent between conceding or not conceding. This is achieved by
conceding with a constant hazard rate

λij =
r · U (c, αj, αi)

U (nc, αj, αi)− U (c, αj, αi)

until it is no longer possible that the opponent is a rational type.
To illustrate this framework, consider the following two simple examples

of modifying the preferences of rational players, where αL, αH ∈ C are such
that αL ≤ αH and αL + αH > 1:

1. Simple inequality aversion or spite: The lower-announcer receives a
utility cost to accepting the demand of a higher-announcer.29 That is,

U (c, αL, αH) = (1− αH)− c

for a given c > 0, while all other utilities are as in the baseline model.
Or, the lower-announcer receives a utility boost for not accepting the
demand of a higher-announcer.30 That is,

U (nc, αL, αH) = αL + c

for a given c > 0, while all other utilities are as in the baseline model.
Since both these modifications reduce the value for the lower-announcer
of concession compared to waiting for the other to concede, the higher-
announcer would need to reduce their rate of concessions to keep them

28If U(disagree) ≥ U (c, αi, αj) then this rational type would in fact behave in an
analogous manner to an obstinate αi-type, at least for the subgame in which the other
player chose αj .

29Such a model could be viewed as a reduced-form way of capturing inequality aver-
sion, where the player’s aversion to inequality is not so severe that it makes conceding
unacceptable compared to outright disagreement.

30Such a model could be interpreted as spite: the lower-announcer who, for example,
announces the 50-50 split, gets an extra utility kick from not conceding to the player that
demanded an unfair share.
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in equilibrium. Consequently, this would result in an even weaker posi-
tion for the higher-announcer, leading to an ambiguous effect on delay
(more initial concessions versus slower interior concessions) and less
demanding first-stage announcements.

2. Simple shame or competitiveness: The higher-announcer receives a util-
ity cost to accepting the demand of a lower-announcer.31 That is,

U (c, αH , αL) = (1− αL)− c

for a given c > 0, while all other utilities are as in the baseline model.
Or, the higher-announcer receives a utility boost for not accepting the
demand of a lower-announcer.32 That is,

U (nc, αH , αL) = αH + c

for a given c > 0, while all other utilities are as in the baseline model.
Since both these modifications reduce the value for the higher-announcer
of concession compared to waiting for the other to concede, the lower-
announcer would need to reduce their rate of concessions to keep them
in equilibrium. Consequently, such a modification would achieve the
desired result in a comparable manner to the intermediate case outlined
in Subsection 4.3.

To conclude, if incorporating other-regarding preferences results in mak-
ing concession less appealing for players making more demanding announce-
ments, then the predictions will move in the direction suggested by the ex-
periment. If instead, the main effect is to make concession less appealing
to players making lower, or fairer, announcements, then the modification is
likely to result in ambiguous predictions for delay and first-stage announce-
ments, making it potentially more difficult to produce a modification that
can be reconciled with the data.

31Such a model could be interpreted as a cost of shame: Having pretended to be a
computer player and demanded a more unfair share when, for example, the other player
demanded the 50-50 split, the higher-announcer might feel embarrassed or suffer from
shame for having tried it on.

32Such a model could be interpreted as competitiveness: By not conceding to the other
when, for example, the other demands the 50-50 split, the higher-announcer guarantees
they receive a strictly larger share of the pie, thus “winning” the game.
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