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Abstract

This paper uses a laboratory experiment to study beliefs and their rela-
tionship to action and strategy choices in finitely and indefinitely repeated
prisoners’ dilemma games. We find subjects’ elicited beliefs about the other
player’s action are generally accurate despite some systematic deviations, and
anticipate the evolution of behavior differently between the finite and indefi-
nite games. We also use the elicited beliefs over actions to recover beliefs over
supergame strategies played by the other player. We find these beliefs over
strategies correctly capture the different classes of strategies played in each
game, vary substantially across subjects, and rationalize their strategies.
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1 Introduction

Equilibrium analysis assumes players have correct beliefs about the strategies of
other players and they best respond to these beliefs. These assumptions may be
particularly demanding in repeated games, where (i) strategies can be very complex,
(ii) there can be multiplicity of equilibria, and (iii) learning is made difficult by the
large number of possible histories. This paper uses a laboratory experiment to study
the validity of these assumptions by constructing a novel data set that includes beliefs
as well as actions in repeated prisoners’ dilemma (PD) games. By making beliefs
observable, our goal is to bring to light a key force at work in determining behavior
in such games.

Our experiment on repeated PD games consists of two main treatments: the
Finite game and the Indefinite game. Theory predicts the existence of a unique
equilibrium with no cooperation in the Finite game, but the existence of a multi-
tude of equilibria ranging from no cooperation to full cooperation for sufficiently
patient players in the Indefinite game. This theoretical contrast between the two
games provides a useful backdrop for the study of beliefs and their relationship to
cooperation. Based on the literature, we select parameters so that these two games
generate similar and high levels of round-one cooperation in the laboratory. The two
treatments hence allow us to compare beliefs among subjects taking the same action
in the same round potentially along the same history, and examine whether their
strategic reasoning is similar or different across the two environments.

In a first foray into beliefs in repeated PD games, many questions are of interest.
However, given the challenges associated with implementing both repeated games
and eliciting beliefs in the laboratory, we have opted for simplicity whenever possible:
we use games with perfect monitoring where the past actions of both players are
perfectly observable, and only elicit (first-order) beliefs about stage actions.

Our analysis is on both beliefs about stage actions, or round beliefs, and beliefs
about supergame strategies, or supergame beliefs, which are recovered from round
beliefs using a novel method. Round beliefs are informative since they are a cross
section of supergame beliefs and a more primitive record of subjects’ strategic think-
ing in reaction to history of play and other features of the game. When compared
with eliciting supergame beliefs, eliciting round beliefs is cognitively less demanding
and requires no assumption about the underlying supergame strategies. It is also less
likely to alter how subjects approach the strategic interaction. The method we use to
recover supergame beliefs from round beliefs is in two steps: First, we type subjects
by assigning them to one of the supergame strategies in a predefined consideration



set based on their stage actions. Second, we use elicited round beliefs to estimate,
for each type separately, the supergame beliefs over strategies in this set.

We identify three classes of key results. First, beliefs are, broadly speaking, ac-
curate. This is noticeable at many levels: Round by round, unconditional average
round beliefs are close to empirical action frequencies. Round beliefs are also history-
dependent. In round two, subjects display large changes in their beliefs that closely
reflect the actual change in action frequencies. For instance, in both treatments, sub-
jects who cooperate while their opponent defects in round one decrease their belief
on the likelihood that their opponent cooperates by an average of more than 40 per-
centage points. Round beliefs are also forward-looking. Beliefs towards the end of the
Finite game correctly anticipate that cooperation is substantially less likely, a pattern
not displayed in the Indefinite game. The most striking example of this is that sub-
jects in pairs that have jointly cooperated for seven rounds estimate the probability
that the other will cooperate in round eight to be below 60% in the Finite game, but
above 95% in the Indefinite game. Round beliefs are informed by past experience,
but cannot be reduced to it. For instance, in more than three quarters of cases,
subjects’ round one beliefs differ from the cooperation rate they have experienced in
earlier supergames by more than 10 percentage points. In fact, in 58 percent of cases
beliefs are not even within plus or minus 20 percentage points of the cooperation
rates experienced in earlier supergames.! As for supergame beliefs, they correctly
anticipate the types of strategies prevalent in each environment. Specifically, their
support includes conditionally cooperative strategies in both environments. These
strategies are stationary in the Indefinite game but are non-stationary and switch to
defection in the last few rounds in the Finite game.

Second, despite the aforementioned general accuracy, beliefs also display small
but systematic deviations. Round beliefs are too optimistic towards the end of the
Finite game and too pessimistic at the beginning of the Indefinite game. While,
as mentioned above, supergame beliefs correctly capture the prevalent strategies
in both environments, such beliefs are not necessarily perfectly calibrated to the
actual frequency of strategies in the population. In the Finite game, this plays a
key role in preventing complete unravelling of cooperation. In the Indefinite game,
as particularly visible in our additional treatments where the stage game payoffs are
less conducive to cooperation, this provides an explanation for why payoffs are inside
the efficiency frontier.

!This is consistent with the finding of Nyarko and Schotter [2002] who report that beliefs are
not the average of past observations, or more precisely the v-weighted empirical average [Cheung
and Friedman, 1997].



Third, beliefs are remarkably heterogeneous across subjects. This heterogeneity
is directly visible in the distribution of round one beliefs, but is also present in
the supergame beliefs. Specifically, the supergame beliefs vary substantially across
types, and this variation helps rationalize their strategy choice: for most types, their
strategy is a best response (or close to a best response) to their supergame beliefs
among the strategies in our consideration set.

How do these findings inform our understanding of behavior in these games? In
the Finite game, we observe high cooperation and partial unravelling, behavior not
predicted by theory. Much of this can be explained by beliefs that are just slightly
over-optimistic about how much others will cooperate in the last few rounds of the
game. In a game such as the one studied here (and in many similar games that have
been studied before), even a little over-optimism can substantially weaken incentives
to defect earlier, hindering unravelling of cooperation. Our estimates suggest that,
for 80% of subjects, best responding to their beliefs translates into cooperating too
much relative to the best response against the actual strategy distribution. In the
Indefinite game, on the other hand, we observe that a variety of strategies persist
in the long run. Our results connect heterogeneity in strategies to heterogeneity in
beliefs, which in turn rationalize such strategies. To organize these observations,
we provide a stylized model that borrows elements from the level-k models [Stahl
and Wilson, 1994, Nagel, 1995, Stahl and Wilson, 1995, Camerer et al., 2004, Costa-
Gomes et al., 2001] as well as the gang of four model [Kreps et al., 1982]. Our
model illustrates how the key systematic deviations—over-optimism in later rounds
of the Finite game and over-pessimism in initial rounds of the Indefinite game—can
result from a common mistake where players believe others to be less strategically
sophisticated than themselves.

The present paper contributes to a few strands of the literature. First, it con-
tributes to the literature that studies consistency of beliefs and strategies. To the
extent that this consistency has been studied experimentally, the focus has been
on one-shot games, on which there are mixed results. For example, Nyarko and
Schotter [2002] find that subjects, for the most part, best respond to their beliefs.
Other papers, most notably Costa-Gomes and Weizsécker [2008], focusing on dif-
ferent stage games, do not find such behavior to be as prevalent. Rey-Biel [2009],
who reports a high fraction of best-response behavior, suggests that a general con-
clusion on consistency is difficult as it may depend on various features of the game.
His results, however, indicate that best-response behavior may be higher in simple
games. Review of the broader literature in Online Appendix A suggests an interest-
ing pattern: Lower rates of best response are reported when the game is not played



multiple times or played with no feedback [Costa-Gomes and Weizsacker, 2008, Hyn-
dman et al., 2022, Danz et al., 2012, Rey-Biel, 2009]. Conversely, Hyndman et al.
[2012a] show best response behavior to increase with experience in an experiment
with feedback. Our contribution to this literature is to study consistency of beliefs
and actions in the finitely and indefinitely repeated PD, which, as discussed earlier,
poses unique challenges.? Despite these challenges, consistent with earlier results
from experiments with repetition and feedback, we find behavior to be close to best
response for a majority of our subjects.

Our results also speak to the rapidly growing literature on experiments with belief
elicitation. Most of the papers in that literature examine beliefs in individual deci-
sion making settings (see Danz et al. [2022] for a recent review), and those that study
beliefs in games mostly use one-shot games.> Most closely related to the present pa-
per are the experiments that elicit beliefs in the voluntary contribution mechanisms
(VCM), which are social dilemmas [Géchter and Renner, 2010, Neugebauer et al.,
2009, Fischbacher and Géchter, 2010]. Although some of the studies on the subject
involve designs with fixed pairing and feedback as in the present experiment, to the
extent that prior experiments on beliefs have induced repeated games in the labo-
ratory, they do so assuming that incentives in static interactions remain unchanged
in repeated play. As such, these papers do not consider supergame strategies based
on dynamic incentives, or the possibility of learning over multiple supergames. We
contribute to this literature by studying beliefs in repeated games while highlighting
clearly important dynamic incentives.

We contribute to the experimental as well as theoretical literature on repeated
games in a few different ways. First, in a closely related paper, Gill and Rosokha
[2023] study indefinitely repeated (but not finitely repeated) PD games. Their sub-
jects directly choose one alternative from a list of ten supergame strategies. By
eliciting subjects’ (supergame) beliefs over how the other player chooses from the
same list in the first and last supergames, Gill and Rosokha [2023] study how su-
pergame beliefs change with experience and personality traits. Their results show
that beliefs respond to experience and are more accurate in the last supergame than
in the first. Duffy et al. [2024] find that their subjects fail to best respond against
robot players, which are known to follow the Grim trigger strategy in indefinitely
repeated PD games. Beside studying behavior in two distinct types of repeated inter-

2The large number of histories can make learning difficult in repeated games. For example, in
their final supergame, at least one third of subjects experience a history that is new to them.

30ne exception is Davis et al. [2016] who elicit a crude measure of beliefs by asking subjects to
guess the action of their opponent in an indefinitely repeated PD. Data (analyzed in their appendix)
show a correlation between guesses and actions.



actions, our point of departure from those papers is to study repeated games without
restrictions on behavior. Finally, also note that in Kreps et al. [1982], cooperation
in the finitely repeated PD games is supported by the presence of an irrational type.
Our finding that many subject types cooperate in the Finite game while attaching
positive belief weight to conditionally cooperative strategies lends empirical support
to the formulation of Kreps et al. [1982].

2 Strategies and Beliefs

The stage game is the standard prisoners’ dilemma with two actions, C' (cooperation)
and D (defection). Let A; = {C, D} be the set of (stage) actions, and let A = Ay x Ay
be the set of action profiles with a generic element a. The stage-game payoffs g;(a)
are given in Table 1. The horizon of the supergame (repeated game) is either finite

or infinite. For ¢t = 1,2,..., history A’ of length ¢ is a sequence of action profiles in
rounds 1,...,t. Let H' = A" be the set of t-length histories. A player’s (behavioral)
strategy o; = (0},02,...) is a mapping from the set of all possible histories to actions.

ol(a;) € [0, 1] denotes the probability of action a; in round 1, and for ¢ > 2 and history
ht=1 ot (ht=1)(a;) € [0,1] denotes the probability of action a; in round ¢ given history
hi=1. Let Y; denote the set of strategies of player i. In the supergame with finite
horizon T' < oo, player i’s payoff under the strategy profile is the simple average of
stage payoffs:

ui(o) =T71 Z E, [g:(a")]
t=1
where E, is the expectation with respect to the probability distribution of A’ =
(a*,...,a”) induced by o. In the supergame with infinite horizon, the players have
the common discount factor 6 < 1, and their payoff is the average discounted sum of
stage-game payoffs:

o0

wi(o) = (1-0) > 6" E, [gi(a")] .

t=1

We postulate that each subject 7 is endowed with a supergame strategy o; € %;
and a subjective belief about the supergame strategy played by the other player.*
Specifically, we suppose player i believes j’s strategy is randomly chosen from some

4This formulation follows Kalai and Lehrer [1993]. See also Nachbar [2005] for a similar frame-
work to model a player’s ability to best respond to his belief that is asymptotically correct.



finite subset Z; of XJ; according to a probability distribution p;, which is referred to
as player i’s (prior) supergame belief.5 One interpretation of p; is that it represents 4’s
prior belief over the proportion of different strategies played by the other subjects.®

Note p; can be updated after each round of play conditional on realized history
of play. For each t > 2 and h'™' € H'™! we denote by pt = p;(- | h'™!) player i’s
updated supergame belief about j’s strategy in round ¢ given h'~!. Associated with
this is player i’s round t belief pt(h'~'), which describes his belief about j’s stage
action in round ¢. More specifically, pt(h'™!) is the probability that i assigns to j’s
choice of action C' given h'™!, and is related to pt through

ph) = 7 Blog) ot (H)(C),
0;€Z;
The belief-elicitation task in this experiment involves beliefs over stage actions. That
is, the design elicits from each subject i, in each round ¢ (conditional on history of
play), his belief ! = pt(h'~!). For simplicity, we often refer to u! as a “belief.” In
section 5, we recover the subjects’ supergame beliefs p; from the sequence of their
elicited beliefs uu}, u?, . . ..

Player i’s type refers to his supergame strategy ;. In our estimation of supergame
beliefs, we assume player i is Bayesian in the sense that his supergame belief p;(- |
ht=1) is updated according to Bayes rule after each history: for any ¢ > 1 and
ht — (ht_l,at),

i (o) o (M 1)(a))

Yssez, Pi(65) 7 (W) (ah)
where beliefs in the first round are p; = p;. Player i is subjectively rational if his
supergame strategy o; best responds to his supergame belief p;:

piloj) =

o; € argmax Z pi(o;) ui(6;,05).
G;€Z; 0,€7,

Some of the key supergame strategies in our analysis are as follows. AC and AD
are the strategies that choose C' and D, respectively, for every history. o; is Grim if
gl(h=H(C) =1if At = ((C,C),...,(C,C)) and ol(h'~1)(C) = 0 otherwise. o; is
TFT if 0} (C) =1 and o} (h""*)(a’ ") =1 for every A" ' and t > 2. For k=1,2,...,
0; is Tk, a threshold strategy with threshold k, if o; follows Grim for all t < k, and
then switches to AD after round k.

5We use p instead of p to denote beliefs. In later sections, we use p to denote the actual
distribution of strategies in the population.

6With random matching, i’s belief about the strategy played by his opponent in each supergame
is equal to his belief about the proportion of strategies in the population.




3 Design

The experiment involves two main (between-subjects) treatments, which we refer
to as the Finite and Indefinite games. Three important considerations (besides the
aforementioned aim for simplicity) guides our experimental design.

1. Comparing the Finite and Indefinite games and selecting parameters such that
initial cooperation rates are high in both. Papers such as Dal B6 [2005] shows that
for many parameter combinations, in line with theory, initial cooperation is lower in
Finite games than in Indefinite games. However, as reported in Embrey et al. [2018],
there are also parameter combinations for which high cooperation is observed in the
Finite game (see also Lugovskyy et al. [2020]). This is not in line with theory and
more surprising. For that reason, using past experiments as guidance, we selected
parameters that were expected to generate high round one cooperation for both
Finite and Indefinite games. This allows us to study whether cooperation is driven by
similar considerations across these two games. Furthermore, robustness treatments
introduced in Section 7 allow for further study of the impact of changing parameters
within a game type.

2. Introducing belief elicitation while mitigating its impact on the subject’s play.
One very important concern is that asking for beliefs from the onset of the exper-
iment may alter how subjects approach the strategic interaction. To minimize this
possibility, we separate the experiment into two parts. First, subjects are presented
with “standard” repeated PD experimental instructions that do not mention beliefs.
Second, after four supergames, the experiment is paused, and instructions explaining
the belief-elicitation procedures are given. This two-part approach draws on Dal B6
and Fréchette [2019] and Romero and Rosokha [2023], who do this for strategy elic-
itation.” Although this means not having beliefs in the first supergames, in our
opinion, introducing belief elicitation without impacting play is a key concern and
warrants such caution. Importantly, our method of delaying belief elicitation to later
supergames does seem to be successful in not impacting behavior (see Section 4.1).

3. Allowing subjects to gain ample experience. Prior research, both with finitely and
indefinitely repeated PD games, show the importance of experience [Embrey et al.,

" Dal B6 and Fréchette [2019] find that choices in their experiments with strategy elicitation (in-
troduced after a period of play of the repeated PD) are similar to those without strategy elicitation.
Romero and Rosokha [2023] also find that choices are unaffected with such a design. Experiments
that immediately introduce strategy elicitation have reported different results. See for instance
the 2016 working paper version of Romero and Rosokha [2018]. In that early implementation of
strategy elicitation where the elicitation started from the beginning, they report lower cooperation
rates when doing elicitation as compared to direct choice.



Table 1: Stage Game

In ECU Normalized

C D C D
C 51,51 22,63 C 1,1  —1.416,2
D 63,22 39,39 D 2 -1416 0,0

2018, Dal B6 and Fréchette, 2018], in that behavior evolves in important ways and
subjects need time to understand dynamic incentives. This is why the focus of this
paper is on experienced behavior (beliefs and actions) as observed towards the end
of the sessions. This desire to have subjects play as many supergames as possible is
one of the factors that increase the need for simplicity.

We now turn to the specifics of the experimental design. The left panel of Table
1 shows the stage game used in the experiment (in experimental currency units),
whereas the right panel shows its normalized version.® Instructions use neutral lan-
guage. In the paper, we use supergame to refer to each repeated game played between
two matched players, and round to refer to each play of the stage game. In the Fi-
nite game, each supergame ends after eight rounds, 7" = 8. In the Indefinite game,
there is a % probability after each round that the supergame will continue for an
additional round, inducing an expected supergame length of eight rounds [Roth and
Murnighan, 1978]. To ensure the observation of at least eight rounds of play, the
indefinite treatment uses the block random design that lets subjects play for eight
rounds for sure, and then informs them of if and when the supergame actually ended;
if it has not ended, they subsequently make choices one round at a time.”

At the conclusion of each supergame, subjects are randomly re-matched to play
a new supergame. After four supergames are played, subjects are given new instruc-
tions on the belief-elicitation task. This is the first time beliefs are mentioned to the
subjects. From that point onward, each subject ¢ is asked in every round ¢ to state
their round ¢ belief 1! as an integer between 0 and 100. The task is incentivized
via the binarized scoring rule, which determines the likelihood that a subject wins
50 experimental currency units based on their response in this task and the realized

8The normalization facilitates comparison with prior studies. With normalization, we set the
mutual cooperation payoff equal to 1 and the mutual defection payoff equal to 0. The normalized
temptation payoff is hence 2 = (63 — 39)/(51 — 39) and the normalized sucker payoff is —1.41 =
(22 —39)/(51 — 39).

9This method was first introduced in Fréchette and Yuksel [2017]. As in Vespa and Wilson
[2019], we only use the method for the first block.



action choice of the matched subject.!® The belief question is presented on a sepa-
rate screen after subjects have made their action decision for that round and before
feedback is provided. We opted for this ordering to minimize the risk that the belief
questions influence the way subjects play these games. This process continues until
the first supergame to terminate after at least one hour of play has elapsed.

Although prior research on indefinite PDs has not found that risk aversion is
an important determinant of choices [Dal Bé and Fréchette, 2018], risk preferences
could, in principle, mediate the relation between beliefs and choices. For this rea-
son, we also elicited subjects’ risk preferences at the end of each session using the
bomb task [Crosetto and Filippin, 2013|. Instructions for this task were distributed
after the completion of the last supergame. For the main treatments, we conducted
eight sessions per treatment. The relatively large number of sessions per treatment
is required for the estimation of beliefs over strategies as presented in Section 5.
The supergames for the part with belief elicitation are separated into early and late
(see Table 5 in Online Appendix B for more information). We use this categoriza-
tion in the presentation of results, with most of the data analysis focusing on late
supergames. We randomly chose one supergame without belief elicitation and one su-
pergame with elicitation for payment, and paid subjects for the outcomes of all game
rounds for those two supergames. We also paid subjects for the belief-elicitation task
in one randomly selected round of one randomly selected supergame.!! In total the
main experiment involved 302 subjects, who made choices over 11 supergames on
average. Fach Finite supergame involved 8 rounds, while the Indefinite supergames
involved 11.37 rounds of choices on average, but only 9.26 choices counted toward
payment (the two are not the same because of the block random implementation).'?

10Tncentive compatibility of the binarized scoring rule is independent of a subject’s risk attitude
(Allen [1987], McKelvey and Page [1990], Schlag and van der Weele [2013], and Hossain and Okui
[2013]). We use the implementation outlined in Wilson and Vespa [2018].

" To address hedging concerns, we chose the supergame for the belief-elicitation task from the
supergames not used for the action task. In addition, as is typical in experiments eliciting beliefs,
the rewards for the beliefs (either 0 and 50) are smaller than those for choices (between 176 and
505 for an eight round supergame). ECUs were translated into dollars at an exchange rate of 3
cents per point. Maximal ECU earnings from the bomb task were 99. All subjects also received a
show-up fee of $8. Earnings from the experiment varied from $22.00 to $63.75 (with an average of
$35.30). All instructions (available in Online Appendix F) were read aloud. The computer interface
was implemented using zTree [Fischbacher, 2007] and subjects were recruited from UCSB students
using the ORSEE software [Greiner, 2015].

2The random termination of supergames is determined by a pseudo-random number generator.



4 Results
4.1 Actions
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Figure 1: Cooperation Rate over Supergames

For any supergame, denote by z! the indicator of subject i’s choice of C' in round
t, and by Z', the round ¢ cooperation rate averaged over subjects. As will be clear
from the context, the analysis in what follows sometimes aggregates Z' over multiple
supergames.

Figure 1 shows cooperation rates by supergame. Starting with the Finite game
(the left panel), we observe relatively high initial (round one) cooperation rates
slightly above 80%. Focusing on rounds > 2, and dividing the sample into two cases,
xt following the other player’s cooperation a;-’l = (' and those following other’s
defection az_l = D, we observe high cooperation rates following cooperation and low
cooperation rates following defection. We also observe that the difference between
those two averages, referred to as responsiveness, increases with experience. The
cooperation rate in round eight is decreasing with experience and is low by the end
(below 20%).

The right panel of Figure 1 presents the same statistics for the Indefinite game.
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In this case, and as with the Finite game, round-one cooperation rates are high (start
slightly below 80% and increase to slightly above 80%). Cooperation rates following
cooperation by the other are high, whereas cooperation rates following defection are
low. Again, responsiveness increases with experience. However, in contrast to the
Finite game, cooperation rates in round eight are high and increasing with experience.

In Online Appendix B, we provide further analysis and confirm that behavior
along key dimensions in our experiment is qualitatively consistent with prior find-
ings on these two games without belief elicitation. In summary, consistent with prior
experiments with comparable parameters, the design successfully generates similar
and high levels of round-one cooperation in both games. Also in line with prior find-
ings, subjects display responsiveness that increases with experience. Furthermore,
cooperation collapses at the end of the Finite game but persists in the Indefinite
game. Finally, it is worth noting that when regressing round one cooperation on
potentially relevant regressors, a dummy variable that takes value one when beliefs
are elicited and zero otherwise is not statistically significant (see Table 6).

Result 1 We reproduce qualitative data patterns observed in previous experiments
on Finite and Indefinite PD games, and find no indication of actions being impacted
by belief-elicitation. In particular, our results confirm cooperation is history depen-
dent in both games. Furthermore, cooperation evolves differently in both games: it
collapses at the end only in the Finite game.

4.2 Consistency of Actions and Beliefs

Let pif = Y"1, puf denote the average of round ¢ beliefs, which is aggregated over
multiple supergames and/or over particular histories in what follows.

Putting beliefs and actions together reveals beliefs—on average—to be remarkably
accurate, often tracking cooperation rates within a range of a few percentage points.
Figure 2 shows for late supergames that the point estimate for average belief ji’
is close to that for the average cooperation rate Z' in each round ¢ and that their
confidence intervals display substantial overlap. When aggregated over all first eight
rounds, the differences between action frequencies and beliefs are small, at less than
one percentage point for Finite and two percentage points for the Indefinite game.
This difference is not statistically different from 0 for the Finite game, but it is for

11



Finite Indefinite

Tt
2 2
& o
c c
o o
8 ©
g g
<) o A
Q Q
(&} o
C\! .
o od
T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Round Round
——@——— Cooperation Rate — —@ — - Belief

95% Conf. Int. Coop. F—— 95% Contf. Int. Belief

Late supergames.

Figure 2: Choices and Beliefs by Round

the Indefinite game (although small in magnitude).!3:14

However, looking at each round separately, in both games we see a statistical
difference between action frequencies and beliefs for rounds one through three. The
difference is about four percentage points for each of the three rounds of the Finite
game, whereas it is 11, 5.8, and 2.0 percentage points for the same rounds of the
Indefinite game. In rounds seven and eight, we also see statistically significant dif-
ferences between action frequencies and average beliefs for the Finite game. The
difference is 9.5 and 3.1 percentage points for rounds seven and eight, respectively.
In other rounds (rounds 4-6 of the Finite game and rounds 4-8 of the Indefinite
game), beliefs and cooperation rates are not statistically different at the 10% level.
In summary, to the extent that action frequencies and beliefs differ, the deviations
are most prominent for late rounds in the Finite game and for early rounds in the
Indefinite game.

13We perform the test on the difference between the opponent’s action (coded as 1 for cooperate
and 0 for defect) and the reported belief. Results are robust to including all observation rounds or
only the first eight rounds.

MThroughout, when statistically significant is used without a qualifier, it refers to the 10% level.
Here and elsewhere, unless noted otherwise, statistical tests involve subject-level random effects and
session-level clustering (see Fréchette [2012] and Online Appendix A.4. of Embrey et al. [2018] for
a discussion of issues related to hypothesis testing for experimental data). In the case of beliefs, as
here, we use a tobit specification allowing for truncation. For tests of cooperation, we use a probit
specification.
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So far in Figure 2, we considered only unconditional beliefs, but what about
the subjects’ ability to anticipate actions following specific histories? To consider
histories with a sufficient number of observations, we examine this for round two.
Figures 3 and 4 present the relevant data conditional on round-one histories (labeled
with one’s own action first followed by the opponent’s action). In both games, we
observe that beliefs quickly adjust in response to the other’s action. In all cases,
beliefs move in the correct direction from round one to round two. Furthermore,
subjects are capable of very large adjustments in beliefs, sometimes of more than 50
percentage points. Note that this provides clear evidence of subjects updating their
beliefs about the future cooperativeness of their counterpart following a history in
which defection is observed. It is also interesting that such beliefs become equally
pessimistic regardless of which player has defected. Comparing the two figures, we
see action frequencies and beliefs evolve in a similar fashion in all panels except for
the top-left panel, which shows clear differences across the two treatments. In the
Finite game, most of the initially cooperative interactions eventually break down,
and this breakdown is mirrored by beliefs. In the Indefinite game, on the other
hand, beliefs about cooperation are sustained if they survive the first round.

Our focus, so far, has been the accuracy of beliefs on average. We study the accu-
racy of beliefs at the individual level in Online Appendix B. Table 8 in this appendix
reports the accuracy of beliefs at several different precision levels. For rounds one
and two (separated by round one history), the table reports the share of subjects (i)
who correctly identify cooperation as a likely, unlikely, or uncertain event (classifica-
tion is based on whether both beliefs and average cooperation rate are higher than
66 percent, lower than 33 percent, or between 33 and 66 percent respectively); (ii)
whose beliefs are within five or ten percentage points of the average cooperation rate.
The majority of subjects have broadly accurate beliefs, namely their beliefs lie in the
same tercile (likely/unlikely /uncertain) as the observed cooperation rate. Nonethe-
less, only a minority of subjects hold beliefs that are within 10 or 5 percentage points
of the actual frequency: 14 and 7 percent (10 and 7 percent) respectively for round
one in the Finite (Indefinite) game. The accuracy of beliefs increases substantially
in round two, particularly after the most commonly observed histories.

As Figures 3 and 4 above show, supergames starting with joint cooperation are
the most common. How do beliefs evolve on a mutual cooperation path? Figure
5 shows the average cooperation rates &' and average beliefs i' along the history
=t = ((C,C),...,(C,C)). For example, a solid circle at round five indicates the
empirical cooperation rate after four rounds of joint cooperation (close to 100% in
both games). The most striking observation is the sharp decline in beliefs toward
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the end in the Finite game. That is, subjects (correctly) anticipate the increasing
likelihood of defection from their opponent despite the fact that all choices up to
that point were cooperative for both players.!’®> Nonetheless, we see clear evidence
that subjects underestimate the degree to which cooperation drops from round 6 to
7: whereas beliefs are well calibrated in round 6 (within 1 percentage point of the
empirical frequency), they show over-optimism (13 percentage points higher than the
empirical frequency) in round 7, and become better calibrated in round 8 (within
4 percentage points). In summary, these findings suggest that although subjects
anticipate the decline in cooperation, they underestimate the magnitude and foresee
only 60% of the actual drop in cooperation. In the Indefinite game, on the other
hand, beliefs and cooperation rates remain high as the supergame unfolds. We also

note that these patterns are already visible in early supergames (see Figure 18 in
Online Appendix B).

These observations suggest that the evolution of beliefs in the Finite game cannot
simply be explained by heuristic models based on past actions (within a supergame).
For example, if a subject always set his belief equal to his opponent’s action in
the previous round, he would report beliefs for round 7 (in the Finite game) that
are almost three times more over-optimistic than the ones we observe in the data.

5The decline in beliefs is not driven by selection: conditioning on subjects who remain on a
cooperative path until the eighth round, beliefs decline from 84% in round 2 to 52% in round 8.
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Clearly, beliefs in the Finite game change on a cooperative path with the length of
the interaction, and hence are non-stationary.

Result 2 (1) Beliefs are accurate, on average, but show some systematic and per-
sistent deviations: they are over-optimistic in later rounds of the Finite game and
over-pessimistic in earlier rounds of the Indefinite game. (2) Beliefs respond to the
history of play. (3) However, differences exist across games even along the same his-
tory. In particular, subjects correctly anticipate cooperation will break down despite
a history of joint cooperation in the Finite game.

We now turn to the question of whether different actions are supported by differ-
ent beliefs. We summarize key results here and refer the reader to Online Appendix
B for detailed analysis. First, we study the degree to which round-one beliefs are
predictive of round-one actions. Overall, subjects with optimistic beliefs are more
likely to cooperate in both treatments, but round-one beliefs are more predictive
of round-one actions in the Indefinite game than in the Finite game.!® Second, we
study how the distribution of beliefs differs across these games in later rounds con-
ditional on the subject’s action in that round. Once again, higher cooperation rates
are associated with more optimistic beliefs in both games, but cooperation and defec-
tion in certain rounds are associated with different beliefs for Finite versus Indefinite
games. In round eight, particularly, beliefs of the subjects who cooperate are statis-
tically different across treatments (p < 0.001), as are those of the subjects who defect
(p = 0.065). Specifically, subjects who defect in round eight of the Finite game are
more pessimistic (on average) than those who do so in the Indefinite game. Further-
more, subjects who cooperate are more optimistic in the Indefinite game than those
in the Finite game. In fact, even at the very beginning of the supergames, subjects
who defect in the Indefinite game are more pessimistic about the probability that
their opponent will cooperate than subjects in the Finite game (p < 0.001).7

Result 3 Beliefs correlate to actions, and more optimistic subjects are more likely
to cooperate. The same-round belief can generate different actions in each game.

16The analysis of Online Appendix B includes kernel density estimates of the distribution of
round-one beliefs u} separated by treatment and by the subject’s own action a; in round-one
(Figure 19) and regression analysis (Table 9) of the determinants of cooperation. These results also
suggest that risk preferences have some limited predictive power for round-one choice in the Finite
game (with the likelihood of cooperation decreasing with risk aversion). In randomly terminated
PDs, Proto et al. [2019] does not find a significant effect of risk preference on the first choice of a
session, but Proto et al. [2022] does.

1"These patterns are clearly visible in Figure 20 (Online Appendix B), which plots the CDF of
beliefs by action and treatment for each round. Table 10 in the same Appendix depicts the marginal
impact of beliefs (and round number) on the likelihood of cooperation.
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5 Beliefs over Supergame Strategies

The preceding section finds a link between actions and beliefs, but to study whether
subjects’ behavior is a best response to their beliefs we need to move beyond beliefs
over actions and instead consider beliefs over strategies. The goal of this section is to
develop an estimation method that takes as an input beliefs over actions (the data
collected in the experiment) and translates this to beliefs over supergame strategies
as an output. We then use this method to study how the strategy choice relates to
beliefs. We do not make the claim that subjects reason in terms of strategies per se,
but that we can potentially represent their behavior as such.

Our estimation strategy consists of two stages:

(A) Classify subjects into types based on the actions they take.

(B) Estimate beliefs over supergame strategies separately for each type.

It is important to highlight that the two stages use different data: typing is based on
actions only and estimation of supergame strategies relies in beliefs (conditioning on
history). Thus, the estimation method does not impose any structure between typing
and estimation of beliefs over supergame strategies, allowing us to meaningfully study
variation in beliefs over supergame strategies by type. Since our primary interest
in this section is studying whether subjects’ behavior can be rationalized as a best
response to their beliefs, in stage (A) we will type subjects based on the strategy they
are most likely to be playing. However, the belief estimation method described in
(B), which is the main innovation of this section, can easily be paired with alternative
typing procedures.

Here, we outline the intuition for the approach developed in (B) using a simplified
example. Suppose we want to recover beliefs over strategies for one player (referred
to as player 1) when the data available to us are round beliefs over actions elicited in
one supergame (against player 2). For the purpose of the example, assume we know
player 1 believes that player 2 uses one of only three strategies: AD, AC, or Grim. In
round one, we observe player 1’s unconditional belief that his opponent will start by
cooperating: ui = 0.6. From this belief, we can already infer the probability player
1 associates with player 2 playing AD, because it starts by defection. That is, we
can infer p(AD) = 0.4 and p(AC) + p(Grim) = 0.6. However, we cannot determine
p(AC) or p(Grim) separately. To do so, we look at beliefs elicited in other rounds
of the supergame. Assume that in round one, player 1 plays D and player 2 plays
C. After observing this history, player 1 reports his round-two belief: u? = 0.1.
Because player 2 started by playing C, player 1 now knows she is not playing AD.
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However, player 1’s belief about whether player 2 will cooperate in round two can
reveal information about whether he believes player 2’s strategy is more likely to
be AC or Grim. Note that after such a history of (D, C), the two strategies indeed
prescribe different actions: D for Grim and C for AC. Given u?, we can recover (via
Bayes’ rule) that p(AC) = 0.06 and p(Grim) = 0.54. This method provides us with
a roadmap for how we can recover ex-ante beliefs over strategies using data on beliefs
over stage actions elicited in each round of a supergame. In addition, we allow for
players to believe others implement their strategies with error and that subjects may
report their belief with some error.

The example above lays out the intuition behind our methodology as well as
highlighting some of the challenges it presents. We outline below how we address
these challenges.

(1) Belief estimation in the example above relies on the assumption that the relevant
strategies (over which subjects have beliefs) are known.'® How do we specify
the relevant set of strategies for our data set? By now, a significant body of
literature documents which strategies are used in repeated PD games. This
literature guides how we construct the consideration set.

(2) The example was constructed such that the data can easily separate the strate-
gies considered; but in some cases, this can require specific histories that are
not common and thus call for more data. To increase sample size, we pool data
from multiple subjects. However, assuming all subjects share the same beliefs
seems unreasonable. Instead, we group subjects according to the strategy that
best describes how they play, referred to as their type. We assume subjects of
the same type share the same beliefs.?

Below we describe the estimation strategy in detail before presenting results.

8Note that this is not a challenge unique to our study but one encountered by any study that
presents analysis involving strategies or beliefs over strategies in repeated games. In the literature
studying strategies in repeated games, such an assumption is introduced either at the design stage,
for studies eliciting strategies directly, by restricting the set of strategies available to subjects
(essentially reducing the repeated game to a simultaneous move game), or a similar assumption is
made at the estimation stage by focusing the analysis on a set of strategies. One advantage of the
later approach, as adopted in this paper, is that the data can always be reanalyzed under different
assumptions on the set of strategies considered.

9To validate this assumption, we do the following exercise. We compute the spread of beliefs
defined as the difference between the 25" and 75" percentiles of beliefs averaged over rounds and
histories. We test whether the spread of beliefs is less among subjects that are of the same type
relative to all others in the population. Out of the 10 types (to be defined later) observed in the
Finite game and the eight types in the Indefinite game; only three of the 18 paired comparisons are
not in line with the assumption that the spread in beliefs is less among subjects of the same type.
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5.1 Typing of Subjects

We type subjects based on the strategy they are most likely to be playing. We do this
in two steps: (1) We estimate the distribution of strategies used at the population
level; (2) For each subject, given their choices, we compute the posterior likelihood
of playing each strategy using population-level estimates as a prior. We classify
subjects into strategy types by identifying the highest posterior. See Section 7 for a
discussion of alternative approaches.

Population-Level Estimates of Strategies

We first use the Strategy Frequency Estimation Method (SFEM) introduced in Dal
Bé6 and Fréchette [2011] to estimate the distribution of strategies used. The method
first specifies the set of candidate strategies and then estimates their frequencies in a
finite-mixture model allowing for the possibility of implementation errors. We use a
two-step procedure to determine the set of strategies in our analysis. This set consists
of AD, AC, Grim, TFT, STFT, Grim2, and TF2T, as well as threshold strategies
T8, T7, and T6.2° Online Appendix B describes the two-step procedure and defines
all strategies considered in our analysis. Formally, the SFEM results provide two
outputs p and [, both at the population level: p is a probability distribution over
the set of strategies, and S is the probability that the choice corresponds to what
the strategy prescribes. The method identifies the values of p and [ that maximize
the likelihood of the observed sequences of actions.

Classification of Subjects

We use the SFEM results to compute the Bayesian posterior that a subject is playing
each of the candidate supergame strategies given the sequence of their actions. Each
subject is associated with the supergame strategy that has the highest likelihood
according to this posterior.?!

To demonstrate how this works, consider a simpler setup where the set Z of
candidate strategies consists only of AD and AC. Assume the SFEM yields p =
(pap,pac) = (0.7,0.3) and 5 = 0.9. The corresponding behavioral strategies (that
allow for implementation errors) are then given by AD and AC.

20We refer to Grim, TFT, Grim2, and TF2T as conditionaly cooperative strategies: they begin
with cooperation and switch to defection only after some histories involving defection.

21This approach allows for comparison to the many previous papers that do strategy estimation
using SFEM. For instance, Dvorak [2020] recently provides a R-package for easy implementation of
SFEM using the EM algorithm, which includes a very similar typing procedure.
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Consider a subject who, over multiple supergames consisting of 24 rounds in
total, cooperates in 20 rounds and defects in four rounds. Given p and f, we can

calculate the Bayesian posterior that this SubJect is playing AD versus AC. In fact,
pADﬁ4( /8)20
PA‘Bﬁ(l B)Qo'i‘pAcﬂQO( _ﬁ)

close to 0, whereas the posterior that he is playing AC is close to 1. Consequently,
this subject would be typed as playing AC.

the posterior that the subject is playing AD is 7, which is

5.2 Estimating Supergame Beliefs

For each type in our data, we estimate their supergame beliefs over strategies p, as
well as parameters § and v.?> Specifically, j is a probability distribution over the
set Z?, which has one-to-one correspondence with the set Z of candidate strategies
used in the SFEM as follows: for each 0; € Z, 7; € ZP is a stochastic version of of
in the sense that at each history, o; chooses the same action as o; with probability
3, but chooses the other action by error with probability 1 — .

Note that p and ﬂ jointly pin down beliefs over stage actions given each history.
For illustration, suppose again that the set Z of candidate strategies consists only
of AD and AC so that Z” consists of their randomized versions AD and AC for
3 =0.9. It then follows that the round-one belief p; equals prg x 0.1 +pie < 0.9.
If the subject observes a} = (' in the first round, by Bayes’ rule, his belief in round
two will increase to

(~ Pyp X 01 )01+( Pic x 0.9 >0.9.

Pap X 0.1+ pie X 0.9 Pap X 0.1+ pge x 0.9

The third parameter v represents potential errors in the reporting of beliefs. For-
mally, if a subject’s belief in any round ¢ (implied by p and 5’) is uf, we assume his
reported belief is distributed according to the logistic distribution with mean p! and
variance v truncated to the unit interval. For each type, we identify the values of p,

/3, and v that maximize the likelihood of the sequence of elicited beliefs in all rounds
of late supergames.

22The variables with tilde are estimates about beliefs and distinguished from the corresponding
SFEM estimates of strategies.
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5.3 Results

Population-level Estimates of Strategies and Classification of Subjects

Table 12 in Online Appendix C presents the estimation results of the distribution
of strategies at the population-level (in columns 2 and 5) sorted by prevalence. The
results are consistent with prior evidence on strategy choice in repeated PD: Thresh-
old strategies are important in the Finite game [Embrey et al., 2018], and AD, Grim,
and TFT account for a majority of the strategies in the Indefinite game [Dal B6 and
Fréchette, 2018].23

In the Finite game, T7 and T8 account for a little over half of the strategies, and
they, along with AD, make up two thirds of the choices. Another threshold strategy,
T6, is also in the top 5 at 8%. Additionally, TFT and Grim are commonly used
strategies (at the 4th and 6th positions).

In the Indefinite game, conditionally cooperative strategies dominate, with TFT
and Grim representing more than half of the choices. The lenient versions of Grim
and TFT are also among the popular strategies, accounting together for 21% of the
choices. Together these four account for more than two thirds of the strategies. Other
prominent strategies are AC and AD, two unconditional strategies, representing 20%
of the choices. All other strategies are at most 4% each, and the threshold strate-
gies are almost completely irrelevant. Together, conditionally cooperative strategies
account for 75% of the data (by contrast, these strategies represent only 21% of the
data in the Finite game).

Table 12 also reports in the third and sixth columns the complete results of the
typing exercise. The type shares are largely similar to the population estimates from
SFEM. However, we also observe some differences. In particular, in the Indefinite
game, the fraction of subjects typed as TFT is greater than the fraction of TFT in
the population.?* Clearly, the smaller the fraction of subjects of a given type, the
less reliable their belief estimates will be.

20Online Appendix C also reports SFEM results for early supergames (the changes are presented
in Figure 27). Consistent with Embrey et al. [2018] those results show that threshold strategies
increase with experience in the Finite game.

24Two potential sources for such differences are possible. First, and simply mechanically, some
subjects play more supergames than others; the fraction of subjects corresponding to a type can
differ from the population (over supergames) fraction of that strategy. Second, imagine a data set
where a large fraction of subjects is estimated to play TFT, and a smaller fraction is estimated to
play Grim. However, there are subjects whose actions are equally consistent with Grim and TFT.
Our method would type those subjects according to the prior. See Section 7.1 for more on this.
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Result 4 We reproduce results about strategy choices observed in previous finitely
and indefinitely repeated PD games. In particular, our results confirm strategic
heterogeneity exists within and across treatments. In the Finite game, subjects
mostly use threshold strategies, whereas in the Indefinite game, they mostly rely on
conditionally cooperative strategies.

Estimates of Beliefs over Strategies

A summary of these estimation results are reported in Tables 2 and 3, with the
complete results provided in Online Appendix C. Note that some types are not
observed frequently enough to allow for estimation, which is the case whenever only
1% of subjects are of a certain type. In addition, there is sometimes insufficient
variation to separate the beliefs with respect to some of the strategies. In those cases,
we set the least popular strategies (according to SFEM) to zero and “assign” the
belief to the more popular strategy.?> This applies to only three of the 84 estimates
reported in Tables 2 and 3. The rows are sorted by frequency of the strategy, and
the columns are sorted by average belief (i.e., the first strategy for which we report
beliefs is the one that, on average, subjects put the most weight on).

Table 2: Beliefs over Strategies in the Finite Game

Share Estimated Beliefs - p
Type SFEM Typing T7 T8 Grim TFT AD TF2T Grim2 Other v B
T7 0.30 0.35 043 0.39 0.18 0.00 0.00 0.00 0.00 0.00 0.04 1.00
T8 0.22 0.20 0.00 0.50 0.04 0.01 0.09 0.15 0.21 0.00 0.04 1.00

AD 0.12 0.12 0.75 [0.00] [0.00] 0.00 0.07 0.00 0.00 0.18 0.06 1.00
TFT 0.09 0.12 0.00 033 0.00 053 0.11 0.00 0.00 0.03 0.05 1.00
T6 0.08 0.08 0.99 0.00 /0.00] 0.00 0.00 0.00 0.00 0.00 0.03 1.00
Grim  0.08 0.02 0.00 022 017 016 0.34 0.01 0.00 0.10 0.07 1.00
Other 0.11 0.11 0.01 0.14 030 0.26 0.01 0.09 0.05 0.11

All 030 029 011 0.09 0.06 0.05 0.05 0.04

Estimation on late supergames out of 10 strategies: AD, AC, Grim, TFT, STFT, T8-T6, Grim2, and TF2T.
Rows, top 6 played strategies. Columns, top 7 believed strategies.

Estimates in [square brackets] are not estimated due to collinearity.

SFEM estimate for 3 is 0.94. Complete results in Table 15.

25In a small number of cases, estimates for strategies distinguished by very few points can vary
(for example AC and TF2T). This does not change the interpretation of our results. Using more
stringent criteria for collinearity would eliminate such variation but would make comparisons across
types and treatments more challenging.
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Table 3: Beliefs over Strategies in the Indefinite Game

Share Estimated Beliefs - p

Type SFEM Typing Grim TFT TF2T AC AD Grim2 STFT Other v B
TFT 0.36 0.59 028 025 019 0.00 008 0.14 0.05 0.00 0.01 1.00
Grim 0.18 0.09 0.80 0.13 0.02 0.00 0.00 0.05 0.00 0.00 0.06 1.00
Grim2  0.11 0.11 0.22 0.00 023 0.23 0.00 0.31 0.00 0.00 0.02 1.00
AC 0.11 0.05 0.00 020 0.00 0.80 0.00 0.00 0.00  0.00 0.10 1.00
TF2T  0.10 0.01 0.33 0.00 0.40 0.27 0.00 0.00 0.00 0.00 0.01 1.00
AD 0.09 0.10 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.04 1.00
Other  0.05 0.05 0.29 0.00 0.00 0.00 039 0.13 0.00  0.00

All 031 0.14 014 0.14 014 0.10 0.02  0.00

Estimation on late supergames out of 10 strategies: AD, AC, Grim, TFT, STFT, T8-T6, Grim2, andTF2T.
Rows, top 6 played strategies. Columns, top 7 believed strategies.

Estimates in [square brackets] are not estimated due to collinearity.

SFEM estimate for 8 is 0.94. Complete results in Table 16.

Tables 2 and 3 reveal important differences in beliefs between the Finite and
Indefinite games. The bottom row of each table presents (weighted) average beliefs
over strategies. In the Finite game, subjects believe others are most likely to use
threshold strategies (T7 and T8 account for 59%), whereas in the Indefinite game,
they believe others are most likely to play conditionally cooperative strategies (Grim
and TFT have together 46%). That is, at least in this respect, subjects’ beliefs are
in line with behavior in both games: subjects correctly anticipate the most popular
class of strategies to be different between the games (threshold vs. conditionally
cooperative). Furthermore, looking at the first two rows of each table, and focussing
on the two most common strategies, we see evidence of substantial heterogeneity in
beliefs between types (in the same game). For instance, T8 types in the Finite game
put 0 weight on T7, whereas the T7 types believe 43% of others play T7. In the
Indefinite game, TFT types believe only 28% of subjects play Grim, whereas Grim
types expect 80% to be Grim players.?%

Result 5 Beliefs are different between the Finite and Indefinite games: subjects
correctly anticipate the most popular class of strategies to be different between the
games (threshold vs. conditionally cooperative).

Tables 2 and 3 also reveal heterogeneity in beliefs within each game: subjects
using different strategies hold different beliefs. In addition, Figure 29 in Online

26 Estimates of 3 close to one for all types is a results of belief reports often being extreme (close
to or exactly 0 or 1), if subjects believed others implemented their strategies with error, belief
reports would move towards 0.5.
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Figure 6: Best Response for Top 6 Types in the Finite Game

Appendix B shows that, in both the Finite and Indefinite games, on average subjects
display a tendency to believe others are more like themselves than they actually are;
that is, they overestimate the likelihood that others are of their own type.2”

Studying Best Response

Next, we explore the extent to which subjects are subjectively rational. For the
purposes of our discussion, we consider subjective rationality in the constrained sense
and examine if a subject’s strategy choice is a best response (or close to being a best
repsonse) to their supergame beliefs within the set of strategies Z in the consideration

2"This tendency can also generate large biases in beliefs for some individual types even if beliefs
are fairly accurate when aggregated over types. For instance, AD types in the Indefinite game
incorrectly believe others are highly likely to be AD types. These results relate to evidence from
psychology and economics on the tendency to believe others act similarly to us: the false consensus
effect [Ross et al., 1977]. See Blanco et al. [2014] for evidence in an experiment that elicits beliefs.
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set.?® Tt is important to reiterate that our analysis poses no restrictions on the link
between the strategies and beliefs: the strategy estimation is based on the subjects’
actions and is done separately from the belief estimation, which is based on their
round belief reports.
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Figure 7: Best Response for Top 6 Types in the Indefinite Game

The results, presented in Figures 6 and 7, suggest most subjects’ strategy choices
are either exact or approximate best responses given their supergame beliefs (see
Online Appendix B for more). The Figures show the normalized expected payoffs
(between 0, joint defection, and 1, joint cooperation) given the beliefs on the y-axis.
Each bar is for one of the 10 strategies, with the one selected by that type in a darker
shade of gray. In the Finite game, T7 and T6 types (38% of the population) exactly

28For consistency, the best-response analysis incorporates beliefs over implementation noise in
how others carry out their intended strategy (captured by 1 — B) However, because estimated
values for 8 are very close to 1, incorporating 3 does not affect the results. To calculate the
expected payoff of each strategy, we simulate play in 1,000 supergames given [3.
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best respond to their supergame beliefs, and T8, TFT, and Grim types (39% of
the population) approximately best respond to their supergame beliefs by obtaining
90%, 86%, and 89% of their best-response payoff, respectively. Of the most common
six types, the only type whose strategy is far from a best response is AD (12%). In
fact, their strategy choice is close to being the worst given the stated beliefs.?”

In the Indefinite game, a similar pattern emerges. Most common types (TFT,
Grim, Grim2, TF2T, and AD—84% of subjects) almost exactly best respond to their
beliefs. One “major” type far from best responding to their belief is AC (11%), who
selects the worst strategy given their beliefs. Indeed, given their beliefs, the best-
response strategy is AD. For these subjects, however, some form of other-regarding
preferences could reconcile strategy choices and beliefs.

Result 6 Substantial heterogeneity exists in beliefs within each game: subjects us-
ing different strategies hold different beliefs. Most types are close to best responding
to their beliefs: they are subjectively rational.

Note the best-response analysis reported so far is subjective in the sense that it
is based on the expected payoffs given the subjective beliefs of each type. To provide
a contrast, we replicate the best-response analysis using objective expected payoffs
computed from the strategy distribution estimated at the population level by SFEM.
This analysis reveals that T6 is the best response to the population in the Finite
game, and Grim2 is the best response to the population in the Indefinite game. In
the Finite game, the most frequent T7 type achieves 97% of the best-response payoff
from T6. In the Indefinite game, the most frequent TFT type achieves 94% of the
best-response payoff from Grim2. However, some strategy-types are further away
from best responding to the population. For example, the AD type in the Finite
game only achieves 64% of the best-response payoff.

6 A Model of Heterogeneous Beliefs

This section presents a stylized model that generates two key results from Section 4.2
— late over-optimism in the Finite game and early over-pessimism in the Indefinite
game — within a common framework. The model builds on two assumptions that
are motivated by findings from the previous section: (i) Players have heterogeneous
beliefs about the strategic sophistication of others, and (ii) most types best-respond

29Note subjects playing AD receive weakly higher payoffs in any supergame than their opponent,
and these subjects have little chance to observe what would happen along alternative histories.
This may contribute to why they fail to optimize given their beliefs.
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to their beliefs. Specifically, the model is built on the level-£ models [Stahl and
Wilson, 1994, Nagel, 1995, Stahl and Wilson, 1995, Camerer et al., 2004, Costa-
Gomes et al., 2001] as well as on the classic gang of four model [Kreps et al., 1982]
as described below.3°

There exists a unit mass of players, and each player belongs to one of three
sophistication levels k& € {0,1,2}. The share of level-k in the population equals (g,
and players are randomly matched to play the repeated PD games without observing
the sophistication level of the matched player. If we denote by RD a stationary
supergame strategy, which randomizes between C' and D with equal probabilities
in every round independent of history, the prior supergame belief of each level is
specified as follows: Level-0 places probability one on RD; Level-1 places probability

one on the (mixed) strategy played by level-0; Level-2 places probability COE‘:Q on the
G

strategy played by level-0, and probability i on the strategy played by level-1. As
for their supergame strategies, level-0 plays a mixture of Grim and RD. Level-1 and
level-2 both play Grim in the Indefinite game, whereas level-1 plays T8 and level-2
plays T7 in the Finite game. Level-0 hence does not best respond to his belief, but
the strategies played by level-1 and level-2 are best responses to their beliefs under
permissive conditions (see Online Appendix D).3! In our model, the conditionally
cooperative strategy Grim played by level-O corresponds to the irrational type who
plays TFT in Kreps et al. [1982] and induces level-1 and level-2 to play cooperatively
(at least initially in the Finite game).?? These strategy profiles as well as the belief
profiles between randomly matched pairs of players determine the evolution of the

mean cooperation rates ' and mean round beliefs i’ in the population.
Figure 8 plots the evolution of the mean cooperation rates ' and mean round be-

liefs fi* for one (common) parameterization of the model in the Finite and Indefinite
games. In the Finite game, higher strategic sophistication corresponds to lower coop-
erativeness in later rounds since level-1 and level-2 types play T8 and T7, respectively.
It follows that over-optimism of beliefs in later rounds is a consequence of players of
all levels underestimating the sophistication of others. By contrast, in the Indefinite
game, higher strategic sophistication corresponds to higher cooperativeness: level-0

30Gill and Rosokha [2023], in an earlier (2020) version of their paper on indefinite PDs, propose
a different level-k type model to link variation in beliefs to levels of strategic sophistication.

31 Appendix D also illustrates how the main predictions are robust to alternative specifications
of the model where (1) level-0 mixes between Grim and AD; (2) level-1 and level-2 place positive
belief weight on their own level.

32 Although Grim (mixed with RD) by level-0 substantially simplifies the analysis in the present
model, we expect the qualitative conclusion to hold if Grim is replaced by TFT as in Kreps et al.
[1982].
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Figure 8: Cooperation Rates in the Finite and Indefinite Games

Notes: Average cooperation rates Tt are shown as a solid line, and average round beliefs it are given by a dashed
line. The figure is generated when ({o,¢1,¢2) = (0.2,0.5,0.3) and level-0 plays Grim with probability 0.6 and RD
with probability 0.4.

is the only type defecting with positive probability in round one. It follows that
underestimation of the sophistication of others generates over-pessimism of beliefs in
early rounds. This is gradually corrected along the cooperative path as players up-
date their beliefs and place higher weight on Grim played by their opponents. Hence,
the model demonstrates how a player’s common but erroneous perception that others
are less strategically sophisticated than them can generate the distinctive patterns
of deviation in round beliefs both in the Finite and Indefinite games.

Our model builds on Kreps et al. [1982] in that it assumes the presence of the
type committed to a particular conditionally cooperative strategy. The fact that the
model predictions here replicate our experimental findings lends empirical support to
the insight of Kreps et al. [1982] that cooperation can result from beliefs that place
positive weight on such a type. The level-k structure of the present model captures
the heterogeneity of beliefs among subjects as well as the discrepancy between their
beliefs and strategies in a way consistent with our findings in both the Finite and
Indefinite games.?

Online Appendix D also uses the model in this section to further highlight the
empirical relevance of the presence of multiple sophistication levels. Specifically, we
generate the experimental findings of Kagel and McGee [2016] and Cooper and Kagel

331t is possible to interpret the reputation model of Kreps et al. [1982] as a level-k model in which
(1) there exist two levels of sophistication: the irrational level-0 and the rational level-1, and (2)
level-1’s belief is correct and places large weight on the level-1 strategy. A critical difference then
is that the players’ beliefs in the present model are misspecified.
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[2023] who examine cooperation rates in the indefinitely and finitely repeated PD
games when each player is replaced by a team of two players. Specifically, when we
form a team by randomly matching two players and adopt the “Truth-Wins norm”
by assuming that the sophistication level of a team equals that of its member with
the higher sophistication level, the model replicates the evolution of cooperation rates
achieved by experienced subjects in Kagel and McGee [2016] and Cooper and Kagel
[2023]. Specifically, compared with individual play, the cooperation rates under team
play are higher in the Indefinite game, but more accentuated in the Finite game in
the sense that they are initially higher but go down more quickly and eventually
become lower in later rounds of the Finite game.

7 Robustness

Section 7.1 provides analyses on the robustness of the estimation method we adopt to
recover beliefs over strategies. Section 7.2 presents results from two new treatments
that study beliefs in the Indefinite game with different stage-game payoffs.

7.1 Estimation of Supergame Strategies

In Online Appendix E.1, we report results of simulations. Those show that supergame
beliefs can be accurately recovered in data sets similar to ours by using the belief
estimation procedure described in this paper. Below, we explain how the procedure
can be generalized to be used with other methods to type subjects, allow for non-
Bayesian updating, and how such changes impact our main results.

Typing in stage (A), as performed in this paper, is potentially impacted by two
factors: (i) the consistency of actions with each strategy and (ii) the prior likelihood
of each strategy. One potential concern is that the prior likelihood of each strategy
can have a disproportionate impact, distorting typing such that subjects end up
being classified as using strategies that are popular at the population-level even
though their actions are not closely consistent with the strategy. Such a concern is
not warranted in our data set: The typing procedure assigns all but one subject to
the strategy their actions are most consistent with according to (i).>* Namely, in
our data set, incorporating (ii), the prior likelihood of each strategy into the typing

34 The only exception is a subject in the Indefinite game who took 17 actions (out of 24) consistent
with T6, but 16 actions consistent with Grim. Because the SFEM estimate for T6 is less than 1
percent in this treatment, the Bayesian posterior that the subject is playing Grim is higher than
that of T6, and thus the subject is typed as Grim rather than T6.
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procedure impacts results mostly as a tie-breaking rule, allowing us to uniquely
classify subjects whose actions are equally consistent with multiple strategies.

A related second potential concern is that by using a typing method that generates
unique classification, we are also estimating beliefs for subjects who are not well
identified in terms of their strategy choice (e.g., those whose actions are equally
consistent with multiple strategies). To respond to this concern, we study the extent
to which our belief estimates change if we restrict our analysis to only those subjects
who are well differentiated in terms of their strategy choice. Results from such an
exercise are presented in Online Appendix E.2. In summary, while different typing
methods produce slightly different beliefs estimates, the main patterns echo those in
our main analysis.

A third potential concern with the method we propose is that it assumes Bayesian
updating. This simplifies the conceptual framework and serves as a reasonable bench-
mark. Nonetheless, the method can be generalized to incorporate non-Bayesian up-
dating. In Online Appendix E.3 we conduct such an analysis to confirm that the
main results of the paper are robust to allowing for such behavior.

7.2 Different Parameters Within the Same Game Structure

Our results so far establish that beliefs (both about actions and supergame strategies)
capture the key differences in strategic behavior between the Finite and Indefinite
games. That is, keeping the stage game constant, subjects’ beliefs change as we vary
the termination rule. This section investigates a complementary question: keeping
the game structure (termination rule) constant, how do beliefs change with the stage
game parameters?

To study this, we focus on the Indefinite game, and conduct two additional treat-
ments that preserve the same 6 = 7/8, but vary how conducive stage-game parame-
ters are to cooperation. Below we present results from 16 new sessions: 8 where the
temptation payoff of the stage game is increased to 73 (from an original value of 63,
referred to as the High T treatment) and 8 where the reward to joint cooperation is
decreased to 45 (from original value of 51, referred to as the Low R treatment). Prior
literature suggests cooperation to be more challenging in these new treatments, but
more so in the Low R than High T treatment.?® These new sessions involved 254

35Simulations (reported in Online Appendix E.1) demonstrate that beliefs can be reliably recov-
ered when using this typing procedure as part of the estimation approach. Online Appendix E.2
provides further analysis on the ability of this procedure to differentiate between types.

36Previous experiments with parameters comparable to High T display large variations in coop-

30



subjects, who made an average of 11.63 choices (9.57 counting for payments) over an
average of 9 supergames. Further details on the implementation of these treatments

are provided in Online Appendix E.4.
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Figure 9: Choices and Beliefs by Round (Equivalent to Figure 2)

Figure 9 shows average beliefs and average probability of cooperation in the
original Indefinite game and contrasts these to the new treatments. As can be seen,
cooperation rates in the High T treatment are quite similar to those from the original
game. Beliefs are slightly more pessimistic about the likelihood of cooperation in
round one (p = 0.064). However, cooperation rates mark a large decrease in the
Low R treatment relative to the original game. Consistent with this, subjects expect
cooperation to be less likely (p < 0.001 for both actions and beliefs in round one and
the first eight rounds altogether).

In both new treatments, as in the original Indefinite game, beliefs in round two,
conditioning on history, show large movements from round one beliefs; these move-
ments are in the correct direction in both the High T and Low R treatments (see
Figures 49 and 50 in Online Appendix E.4). In the Low R treatment, we not only
see large adjustments downwards (as in the original game), but also substantial ad-
justment upward in the case where both subjects cooperate in round one (different
from the original game). Online Appendix E.4 establishes that other key findings
from the original game are also replicated in these new treatments.

eration rates (see Dal B6 and Fréchette [2018]).
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Figure 10: Distribution of Strategies and Average Beliefs over Strategies in the
Indefinite Treatments

The distribution of strategies and the beliefs over strategies further reflect how
changing the stage game parameters impacts strategic reasoning in the Indefinite
game. Figure 10 depicts the cumulative distribution of strategies and supergame
beliefs in the new treatments (High T and Low R) and contrast these with those
from the original Indefinite game (see Online Appendix E.4). Strategies are ranked
in terms of their cooperativeness. Formally, we define a strategy to be more coopera-
tive than another one if, as the probability of implementation errors goes to zero (i.e.
as § — 1), the expected payoff associated with playing the former strategy against
itself is higher than the expected payoff of playing the latter strategy against itself
(derivation provided in Online Appendix G).3” Given the cooperativeness ranking,
first order stochastic dominance between distributions can be interpreted as a treat-
ment shifting behavior to be less cooperative (in the left panel) and beliefs to be more
pessimistic about others’ cooperativeness (in the right panel). Thus, Figure 10 re-
veals: (i) As behavior becomes less cooperative, beliefs also become more pessimistic
about others’ cooperativeness (as seen from the comparison of the original game to

370n the subset of strategies considered by Proto et al. [2022], our cooperativeness order coincides
with the inverse of their harshness ranking.
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the one with Low R).3® This could explain why beliefs are more pessimistic in that
treatment in later supergames. (ii) Beliefs in the Indefinite game (particularly with
parameter values that are not very conducive to cooperation) underestimate the co-
operativeness of others (as seen most clearly from the comparison of the distributions
for the Low R treatment on the left and right panels).
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Figure 11: Best Response for Top 4 Types in New Indefinite Treatments

Finally, Figure 11 focuses on the most common four types in each of the new
treatments and indicates whether their strategy choice is subjectively rational given
their supergame beliefs. The darker bars depicting expected payoff associated with
the strategy corresponding to the type are either maximal or close to being so in all
eight panels, reaffirming our earlier results that subjects are close to best responding
given their supergame beliefs. Focusing on heterogeneity within each treatment,
we observe the subjects typed as playing more cooperative strategies to have more
optimistic beliefs about the cooperativeness of the others. This is visible in the

38Beliefs are also more pessimistic in the the High T treatment although cooperation rates are
similar to the original game. This could be driven by the differences in cooperation rates between
these two treatment in early supergames as can be seen from Figure 48 in Online Appendix E.4.
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Figure when comparing the height of the bars across types, but is more directly
observable using the estimates in Tables 27 and 28. Focussing on the TF2T and AD
types of the High T treatment, the belief estimates indicate that TF2T types believe
80% of subjects play cooperative strategies, whereas AD types only believe 56% of
subjects do so. In the Low R treatment, Grim2 players believe 50% of subjects play
cooperative strategies, versus 19% among AD types.

Overall, these results strengthen our earlier findings on heterogeneity in strategy
choice and its close connection to beliefs in the Indefinite game. Despite experience
with the environment, subjects hold very different beliefs about the strategy choice
of their opponent in the Indefinite game. Differences in beliefs, to a large extent,
support differences in strategy choice. The new treatments demonstrate this very
clearly. Subjects who play cooperative and uncooperative strategies have sufficiently
different beliefs such that strategy choice is subjectively rational (or close to being
s0) in each of the cases.

8 Conclusion

Beliefs play a central role in equilibrium theory, and increasing evidence suggests
they are also key to understanding behavior observed in repeated settings. This
study elicits beliefs in finitely and indefinitely repeated PD games with the main
goal of providing a novel data set to inform our views on how beliefs, actions, and
strategy choices are linked in this important class of games.

We separate the discussion of our findings into those from round beliefs (beliefs
over actions) and supergame beliefs (beliefs over strategies). Our first key finding
is that round beliefs are, in aggregate, remarkably accurate. In both the Finite and
Indefinite games, round beliefs averaged over all rounds are less than three percentage
points away from the empirical action frequencies in our main treatments. Round
beliefs also adjust appropriately to the history of play even when these adjustments
are not small: in some histories, they move by more than 50 percentage points
between rounds one and two. However, there are small, but systematic deviations:
over-optimism in late rounds of the Finite game and over-pessimism in early rounds of
the Indefinite game. In addition, the early over-pessimism observed in the Indefinite
game is also confirmed in two additional treatments. Another key finding is that
beliefs over stage actions are forward looking. Most notably, beliefs along the history
of mutual cooperation evolve very differently in the Finite and Indefinite games.
Persistence of cooperation in the Indefinite game and its collapse late in the Finite
game are correctly anticipated along such histories. Interestingly, the same action
choice can be observed in both games even when subjects report very different beliefs.
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Our second category of findings is based on the development of a novel method
to recover supergame beliefs from the sequence of round beliefs. These supergame
beliefs correctly capture the different classes of strategies used in each environment—
threshold strategies in the Finite game and conditionally cooperative strategies in the
Indefinite game—and also display substantial heterogeneity across subjects playing
different strategies. This heterogeneity in strategies can be linked to the heterogene-
ity in supergame beliefs as most types are close to being subjectively rational: given
their beliefs, their selected strategy is optimal (or close to it) among the strategies
considered. Although beliefs are surprisingly accurate as noted above, systematic de-
viations at key junctures of the game can have important implications for behavior.
In the Finite game, subjects tend to believe others play more cooperative strategies
than their own, which can slow down unravelling. This is consistent with the find-
ings from Kagel and McGee [2016] where team-dialogues reveal subjects engage in
limited backward induction and fail to account for others reasoning in a similar way.
In the Indefinite game, as particularly evident in our additional treatments, subjects
believe others use defective strategies more than is the case. This can explain why
payoffs observed in experiments on the indefinitely repeated PD games are often far
below the maximum symmetric equilibrium payoffs.

The procedure proposed here to recover supergame beliefs has broad applicability.
In repeated games, it can be applied to different sets of strategies and /or be combined
with alternative methods to type subjects. More generally, this procedure can be used
to recover beliefs over strategies from beliefs over actions in any sequential game. Our
aim in eliciting round beliefs is to keep belief elicitation in the laboratory simple and
non-invasive so as to minimize the impact of belief elicitation on behavior. Although
the method we use to recover supergame beliefs inevitably makes assumptions on
how round and supergame beliefs are linked, this approach is a useful starting point
and, as discussed further in the paper, can be modified when there are concerns
about the suitability of those assumptions.

Our results also provide insights into the forces that underlie some of the key
behavioral patterns observed in these games. In particular, they show that standard
preferences with optimizing behavior under slightly erroneous beliefs go a long way
to account for the observed behavior in both the Finite and Indefinite games. In the
finitely repeated PD games, small but systematic departures from accurate beliefs
(at key points in the supergame) sustain cooperation. Although beliefs are generally
accurate, for 80% of subjects in the Finite game, best responding to their subjective
beliefs (that are slightly over-optimistic) involves cooperating more than would be
objectively optimal against the actual strategy distribution in the population. In the
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indefinitely repeated PD games, our results highlight the difficulty of resolving equi-
librium selection due to the persistence of heterogeneous beliefs. This is particularly
true in environments that are conducive to cooperation since subjects experience few
histories which prove those beliefs to be incorrect, leaving a variety of conditionally
cooperative strategies popular even after many repetitions. The systematic devia-
tions in both the Finite and Indefinite games can be replicated by a stylized model
with level-k agents. This model brings to light the intuition that late over-optimism
in the Finite game and early over-pessimism in the Indefinite game, which at first
glance appear at odds, can result from a common mistake where players believe
others to be less strategically sophisticated than themselves.

In summary, our results on beliefs suggest subjects understand the different con-
sequences of the finite and indefinite horizons even when their observed behavior is
identical in early rounds of the repeated games. In other words, subjects have a
refined awareness of the rules of the game and the implications of these rules for
the dynamics of cooperative behavior. They also suggest the calculus underpinning
choices are very different across finitely and indefinitely repeated environments.
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