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The Impact of Monitoring in Infinitely Repeated Games: 
Perfect, Public, and Private†

By Masaki Aoyagi, V. Bhaskar, and Guillaume R. Fréchette*

This paper uses a laboratory experiment to study the effect of the 
monitoring structure on the play of the infinitely repeated prisoner’s 
dilemma. Keeping the strategic form of the stage game fixed, we 
examine the behavior of subjects when information about past 
actions is perfect ( perfect monitoring), noisy but public ( public 
monitoring), and noisy and private ( private monitoring). We find 
that the subjects sustain cooperation in every treatment, but that 
their strategies differ across the three treatments. Specifically, the 
strategies under imperfect monitoring are both more complex and 
more lenient than those under perfect monitoring. The results show 
how the changes in strategies across monitoring structures mitigate 
the effect of noise in monitoring on efficiency. (JEL C72, C73, C92, 
D82, D83)

Many economic situations involve repeated interactions among players. 
While the players can perfectly monitor other players’ past play in some of 

those interactions, they often observe only noisy information about it (imperfect 
monitoring). Imperfect monitoring is further classified into (imperfect) public 
monitoring, where the noisy information is publicly observable, and (imperfect) 
private monitoring, where it is only privately observed by each player. Under 
private monitoring, hence, the players do not know what signals other players 
have observed about their own play. For example, the classic model of collusion 
in a quantity-setting oligopoly by Green and Porter (1984) is an instance of public 
monitoring, where the firms publicly observe the market price that imperfectly 
signals their quantity choices, whereas the model of collusion in a price-setting 
oligopoly by Stigler (1964) is an instance of private monitoring, where the firms 
privately observe the demand for their own good that imperfectly signals the other 
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firms’ prices. While there is now extensive theory of repeated games in the three 
monitoring environments, there is little empirical work on what effects they have 
on the players’ ability to cooperate/collude and their choice of repeated game 
strategies. The scarcity of empirical work is in part attributed to the difficulty of 
obtaining data in the field: publicly available datasets are unlikely to include the 
information the firms use to collude in the repeated interactions, or information 
about other critical parameters such as the discount factor and the conditional 
distribution of signals given actions. In this light, a laboratory experiment offers a 
valuable alternative to field research, and the objective of this paper is to explore 
subjects’ behavior in a laboratory in the three distinct monitoring environments.

In our experiments, the subjects play the repeated prisoners’ dilemma (PD) 
game in the three monitoring environments described as follows: in the perfect  
monitoring treatment, at the end of each round, player ​i​ observes player ​j​’s action 
choice ​​a​j​​​ in that round. In the two imperfect monitoring treatments, player ​j​’s action ​​
a​j​​​ generates a signal for player ​i​ , ​​ω​i​​​. This signal is correct and equals player ​j​’s 
action ​​a​j​​​ with probability ​1 − ε​, but is incorrect with probability ​ε​, where ​ε  =  0.1​ . 
At the end of each round, in the public monitoring treatment, player ​i​ observes the 
pair of noisy signals so generated, ​(​ω​i​​, ​ω​j​​)​. In the private monitoring treatment, he 
only observes ​​ω​i​​​ .

1 The signal profile in the public monitoring treatment is hence 
common knowledge since it is observed by both players, whereas no event that 
is informative about a player’s action choice is common knowledge in the private 
monitoring treatment. In order to focus on the effect of the difference in the moni-
toring structures, we keep fixed other elements of the game as much as possible: the 
three treatments have the same expected stage payoffs and the same continuation 
probability ​δ  =  0.9​ , which is interpreted as the discount factor. Furthermore, the 
payoffs in the perfect monitoring treatment are determined randomly by the same 
probability distribution as in the imperfect monitoring treatments to control for the 
effect of uncertainty.

Our first question concerns the ability of experimental subjects to sustain 
cooperation in the three monitoring environments. Since previous laboratory 
experiments find a positive level of cooperation under perfect and public 
monitoring, our central focus is on the subjects’ ability to cooperate under private 
monitoring. As Kandori (2002) notes, and by now is well recognized, private 
monitoring implies the absence of crucial common knowledge events: the players 
cannot simultaneously begin the punishment or return to cooperation based on their 
signals precisely because those signals are private. This is in contrast to the perfect 
monitoring environment where the history of past actions is common knowledge, 
and the public monitoring environment where the history of public signals is 
common knowledge. In both of these environments, play can be coordinated based 
on these common knowledge events. From a theoretical perspective, cooperation 
in the absence of common knowledge of signals is difficult. Unlike in the per-
fect and public monitoring environments where cooperation can be sustained by 
simple strategies, existing constructions of cooperative equilibria under private  

1 Accordingly, the information observed by a player takes one of two values in the private monitoring treatment, 
whereas it takes one of four values in the public monitoring treatment. 
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monitoring entail the play of intricate strategies.2 Hence, it would not be surprising 
if laboratory subjects fail to cooperate under private monitoring. We attempt to 
carefully isolate the effect of the absence of common knowledge of histories by 
using the private monitoring treatment that differs from the other treatments only 
in the monitoring structure.

We next examine if and how the subjects’ behavior in the three monitoring 
environments differ. We approach this problem in two different ways: we first 
examine if their behavior after certain histories is different under different monitoring 
structures, and then estimate their strategies and check whether the most popular 
strategies are different across treatments. These analyses together help us answer 
the following questions among others: how long back in history does a strategy look 
when choosing actions? Is it lenient in the sense that it does not revert to the punish-
ment after a single bad signal, or forgiving in the sense that it returns to cooperation 
after punishing the opponent? Our analysis also provides an indirect test of the 
theory of private monitoring through the examination of responsiveness, which is 
the difference in the likelihood of the cooperative action after two different signals 
about the opponent’s action choice.

Our findings can be summarized as follows. First, the cooperation rate under 
private monitoring is comparable to those under perfect and public monitoring, and 
significantly higher than that predicted in the one-shot environment. Furthermore, 
the rate of coordination (either on ​(C, C)​ or ​(D, D)​) is slightly lower under private 
monitoring than under perfect and public monitoring, but significantly higher 
than implied by independent action choices. These positive results on cooperation 
and coordination are remarkable in view of the theoretical difficulties associated 
with private monitoring. Second, the subjects play different strategies in the three 
treatments. In particular, when we focus on the cooperative strategies that are found 
in the most significant proportions in each treatment, none of them is lenient under 
perfect monitoring, but all of them are lenient under public and private monitoring. 
Although comparisons in terms of forgiveness are less conclusive, there is some 
suggestive evidence that strategies used under private monitoring are not as 
forgiving as those under public monitoring. Furthermore, when the complexity 
of each strategy is measured by the number of states in their finite automaton 
representation, the strategies under private monitoring are more complex than 
those under perfect monitoring. These findings suggest that subjects find ways 
to cooperate and coordinate using a different mechanism under each monitoring 
structure.

To examine the effects of increasing noise in monitoring on the subjects’ ability 
to cooperate, we conduct additional treatments in which the noise level is doubled: ​
ε  =  0.2​.3 In these high noise treatments, we observe a substantial drop in the level 
of cooperation in all three monitoring environments. The levels of cooperation in 

2 In particular, randomization is used either to generate correlation and coordination of continuation play 
(Sekiguchi 1997, Bhaskar and Obara 2002, and Bhaskar and van Damme 2002), or to make such coordination 
unnecessary, as in “belief-free” equilibria (Piccione 2002; Ely and Välimäki 2002; and Ely, Hörner, and Olszewski 
2005). 

3 Recall that our perfect monitoring treatments entail random payoffs whose distribution depends on ​ε​. A larger ​
ε​ hence implies larger uncertainty in payoff realizations. 
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these high noise treatments are again comparable to one another, but are statistically 
indistinguishable from what can be expected in a one-shot PD. In other words, 
despite the theoretical possibility for cooperation, the high noise treatments with 
any monitoring structure fail to create dynamic incentives required to sustain 
cooperation. This finding from the additional treatments indicates that the ability to 
cooperate is sensitive to the environment, and can sometimes be more significantly 
affected by the degree of randomness in outcomes than by the monitoring structure. 
A deeper investigation of this merits further work.

The organization of the paper is as follows: in the next section, we give a brief 
review of the literature. Section II formulates a model of repeated PD, Section III 
provides a theoretical background, and Section IV describes the experimental 
design. The questions our analysis attempts to answer are listed in Section V, and 
the results are presented in Section VI. The findings from the high noise treatments 
are discussed in Section VII. Section VIII concludes with a discussion.

I.  Related Literature

There is only indirect evidence from observational data as to whether repeated 
interactions under private monitoring lead to cooperation. A meta study by 
Levenstein and Suslow (2006) identifies joint sales agencies and industry 
associations as mechanisms that help cartels through the collection and dissemination 
of information. Harrington and Skrzypacz (2007, 2011) finds that cartels for such 
products as citric acid, lysine, and vitamins went to great lengths to make sales 
public information amongst members and also used interfirm sales as a way to 
transfer profits to sustain collusion. Their work suggests that when firms collude in 
private monitoring environments, they make arrangements for making information 
public, and also make side payments, thus attesting to the difficulty of sustaining 
collusion under private monitoring.

Our primary objective in this paper is to identify the pure effect of the 
monitoring  structure while keeping other aspects of the game fixed as much as 
possible. Although there is now a growing literature on repeated game experiments, 
we are aware of no work that makes cross comparison of different monitoring 
structures including private monitoring.4

Early experimental studies find some cooperation when subjects engage in 
repeated interactions under perfect monitoring.5 Further evidence of cooperation 
in repeated games was provided by Engle-Warnick and Slonim (2004, 2006a, 
b), Dal Bó (2005), Aoyagi and Fréchette (2009), and Duffy and Ochs (2009) in 
various settings (these subsequent studies differ from the earlier ones in that they 

4 Experiments on infinitely repeated games address a number of different questions. They include, to mention 
a few, Schwartz, Young, and Zvinakis (2000); Dreber et al. (2008) on modified PD; Cason and Mui (2014) on a 
collective resistance game; Cooper and Kühn (2014) on the role of communication and renegotiation; Dreber, 
Fudenberg, and Rand (2014) on the relationship between behavior in the dictator game and that in an infinitely 
repeated game; Cabral, Ozbay, and Schotter (2014) on reciprocity; and Bernard, Fanning, and Yuksel (2017) 
on a gift exchange game. Other forms of dynamic games are studied by Battaglini, Nunnari, and Palfrey (2015)  
and Vespa (2016). 

5 See Roth (1995). Early studies include Roth and Murnighan (1978), Murnighan and Roth (1983), Feinberg 
and Husted (1993), Holt (1985), and Palfrey and Rosenthal (1994). 
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allow subjects to play multiple repeated games). Dal Bó and Fréchette (2011) 
finds in perfect monitoring games that cooperation rates by experienced subjects 
are very low when cooperation is theoretically infeasible, and higher when it is 
theoretically feasible, and very high for certain parameter values. Furthermore, 
Dal Bó and Fréchette (2018b) finds that in the repeated PD with perfect 
monitoring, the strategies used by the majority of subjects are simple, and can be  
classified into one of always ​D​ (defect); grim-trigger, which begins with ​C​ 
(cooperate) but switches to ​D​ forever following a defection; and tit-for-tat (TFT), 
which begins with ​C​ and thereafter mimics the other player’s action in the previ-
ous round.

On games with imperfect public monitoring, Aoyagi and Fréchette (2009) finds 
that subjects cooperate in an environment with a continuous public signal, and 
that their payoff decreases with the level of noise in the public signal in line with 
the theoretical prediction on the maximal symmetric perfect public equilibrium 
payoff.6 Fudenberg, Rand, and Dreber (2012) studies a model of repeated PD 
under imperfect public monitoring that is close to our public monitoring treatment, 
and examines the effects of stage payoffs and noise levels on subjects’ behav-
ior. Fudenberg, Rand, and Dreber (2012) finds no systematic difference in the 
levels of cooperation (initial and overall) as the level of noise in public monitoring 
is increased (starting from perfect monitoring), but that the subjects’ strategies 
under public monitoring are more lenient and more forgiving than under perfect 
monitoring. They support this finding both by analyzing specific histories and 
using the strategy frequency estimation method proposed in Dal Bó and Fréchette 
(2011). These results prompt us to study the leniency and forgiveness properties 
of strategies in the private monitoring environment.7

The present formulation of public monitoring differs from those in Aoyagi and 
Fréchette (2009) and Fudenberg, Rand, and Dreber (2012) in a few important 
ways. As mentioned above, the model of Aoyagi and Fréchette (2009) has a 
continuous public signal whose distribution depends on the sum of the two players’ 
actions. This, in particular, implies that statistical identification of a deviator is not 
possible in Aoyagi and Fréchette (2009) unlike in the present model where it is 
possible since the public signal consists of two components that correspond to each 
player’s action choice. This distinction is known to be very important theoretically. 
Fudenberg, Rand, and Dreber (2012) formulates the public signal in the same way 
as in the present paper, but suppose that the public signal not only signals a player’s 
action choice, but also determines his payoff. We instead suppose that a player’s 

6 Some, including Cason and Khan (1999), study repeated games with imperfect monitoring but do not use 
random termination, which has become the standard procedure for implementing infinitely repeated games in a 
laboratory since Roth and Murnighan (1978). See Fréchette and Yuksel (2017) for some alternative termination 
methods and Sherstyuk, Tarui, and Saijo (2013) for alternative payment methods. 

7 Other related studies of infinitely repeated PD games with imperfect public monitoring include Rojas (2012); 
Embrey, Fréchette, and Stacchetti (2013); and Rand, Fudenberg, and Dreber (2015). Rojas (2012) is interested in 
comparing behavior in an environment à la Green and Porter (1984) versus one à la Rotemberg and Saloner (1986) 
and thus varies monitoring accordingly. Embrey, Fréchette, and Stacchetti (2013) explores the explanatory power 
of renegotiation proofness within an imperfect public monitoring environment with communication. Starting with 
the public monitoring technology used in Fudenberg, Rand, and Dreber (2012), Rand, Fudenberg, and Dreber 
(2015) studies the impact of revealing the intended play of each players, thus making the treatment one with 
perfect monitoring. 
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payoff is determined by his own action and the component of the public signal that 
corresponds to the other player’s action.

To the best of our knowledge, Kayaba, Matsushima, and Toyama (2016) offers 
the only other study of private monitoring games in a standard setting.8 Kayaba, 
Matsushima, and Toyama (2016) conducts experiments with two treatments that 
vary the accuracy of players’ private signal, and compare behavior with predictions 
by focusing on a family of strategies they refer to as generous TFT strategies, 
which choose a mixed action as a function only of the most recent signal (i.e., have 
memory-one), and play ​C​ with a higher probability after a ​c​ signal than after a ​
d​ signal.9,10 There are a few important differences between the present paper and 
Kayaba, Matsushima, and Toyama (2016): first, our primary objective is to examine 
the possible difference in behavior across different monitoring environments 
including private monitoring. For this purpose, our experiments are designed so 
as to yield the clearest evidence. In particular, we consult the previous studies on 
the topic and choose parameter values that allow us to statistically distinguish the 
cooperation levels in repeated games (under perfect and public monitoring) from 
that in the one-shot games.11 Second, it is recognized in this literature that there 
are often important changes in behavior for inexperienced subjects. In view of this, 
our analysis of subjects’ behavior focuses on what happens after they accumulate 
experience.12 Third, in terms of the analysis, we do find that our subjects condition 
behavior on histories longer than one round. Unlike Kayaba, Matsushima, and 
Toyama (2016), we take candidate strategies from a more general class than the 
memory-one class. Our results indicate that the complexity of strategies, such as 
memory length, is in fact a key difference in the subjects’ behavior across different 
monitoring environments.

Closely related to repeated games with private monitoring are models of  
random matching within a group where a group of players are matched in pairs 
to a different partner every round. Monitoring is private—although a player 
perfectly observes the action of his opponent in the current supergame, he does 
not observe the actions taken in other pairs. Theoretically, regardless of the group 
size, cooperation can be sustained in equilibrium if ​δ​ is large enough through a 
contagious grim-trigger strategy that cooperates as long as all past interactions 
have resulted in ​(C, C)​ , but defects otherwise. Thus, a single defection results in the 

8 Earlier experimental studies that featured private monitoring in repeated games did so in environments that do 
not lend themselves to exploring standard concepts from the theoretical work on the topic. Holcomb and Nelson 
(1997) observes in a repeated duopoly model (without random termination) that the experimenter’s manipulation 
of information about a subject’s quantity choice “does significantly affect market outcomes.” Feinberg and Snyder 
(2002) studies the effect of occasional manipulation of payoff numbers in a modified repeated PD (a third choice is 
added), and finds less collusive behavior when such manipulation is ex post not revealed than when it is. 

9 As seen in Section III, these strategies form the building block of the belief-free equilibrium. Fudenberg, 
Rand, and Dreber (2012) (online Appendix) finds none of the generous TFT strategies in significant proportions in 
their strategy estimation for public monitoring games. 

10 Kayaba, Matsushima, and Toyama (2016) has two treatments: a player’s private signal equals the other 
player’s action with probability 0.9 in the high-accuracy treatment, and with probability 0.6 in the low-accuracy 
treatments. In both treatments, ​g  =  ℓ  =  2/9​ according to our notation. 

11 This is important since for some payoff combinations and level of experience, positive cooperation rates are 
observed in experiments in contradiction to the theoretical prediction. See Dal Bó and Fréchette (2018b). 

12 See also Dal Bó and Fréchette (2018b). This issue is not addressed in Kayaba, Matsushima, and Toyama 
(2016), who let the subjects play only three supergames under each parametrization. 
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breakdown of cooperation through the contagion process. Duffy and Ochs (2009) 
finds that even when the group size is fairly small—as low as six—their subjects  
cannot sustain cooperation in the random matching environment.13 Subsequent 
experiments by Camera and Casari (2009); Camera, Casari, and Bigoni (2012);  
and Camera and Casari (2014) also confirm that cooperation in the random 
re-matching environment is fragile and is possible only for very small groups, of 
size four. The difficulty of supporting cooperation with random re-matching in small 
groups naturally poses a question as to whether players can sustain cooperation in 
bilateral interactions with private monitoring.

II.  Models of Repeated Prisoners’ Dilemma

Two players play a symmetric ​2 × 2​ stage-game infinitely often. The set of 
actions for each player ​i​ is denoted ​​A​i​​  =  {C, D}​. Player ​i​’s action ​​a​i​​  ∈ ​ A​i​​​ generates 
a signal ​​ω​j​​  ∈  {c, d }​ with noise ​ε  =  0.1​. The probability distribution of ​​ω​j​​​ con-
ditional on ​​a​i​​​ is given by ​Pr (​ω​j​​  =  c | ​a​i​​  =  C )  =  Pr (​ω​j​​  =  d | ​a​i​​  =  D)  =  1 − ε​ . 
The  two signals ​​ω​1​​​ and ​​ω​2​​​ are independent conditional on the action profile  
​a  =  (​a​1​​, ​a​2​​)​.

The payoff of player ​i​ , in the imperfect monitoring treatments, depends on his 
own action ​​a​i​​​ and the signal ​​ω​i​​​ about player ​j​’s action, and denoted by ​​g​i​​ (​a​i​​, ​ω​i​​)​.  
Player ​i​’s expected stage-payoff ​​u​i​​​ is a function of the action profile ​a​ and is 
given by

(1)	​​ u​i​​ (a)  = ​  ∑ 
​ω​i​​∈​A​j​​

​​​ Pr(​ω​i​​ | ​a​j​​) ​g​i​​ (​a​i​​, ​ω​i​​).​

We specify the function ​​g​i​​​ so that the expected stage game payoffs ​( ​u​1​​ , ​u​2​​ )​ form a 
PD as follows:

(2)	​​
 

​ 
 

​ 
C

​ 
 

​ 
 

​ 
 

​ 
D

​ 
 

​   C​  1​    ​ 1​    ​−ℓ​  ​1 + g​   
D

​ 
1 + g

​
 

​
−ℓ

​
 

​ 
0
​ 
 

​ 
0
 ​​    .

In the perfect monitoring treatment, the expected stage game payoffs are also given 
by the above table. Furthermore, in order to ensure commonality across treatments, 
the realized payoffs under perfect monitoring given any action profile are random, 
and have the same distribution as under imperfect monitoring. In our experiments, 
the parameters ​g​ and ​ℓ  >  0​ are chosen to satisfy ​g  =  ℓ​.14

Under perfect monitoring, player ​i​ observes ​j​’s action ​​a​j​​​ at the end of each 
round. Under (imperfect) public monitoring, player ​i​ observes the signal profile  
​ω  ≡  (​ω​1​​, ​ω​2​​ )​. Under (imperfect) private monitoring, player ​i​ only observes ​​ω​i​​ ​.  

13 Their results are replicated in Figure A1 in Appendix A. 
14 The equality ​g  =  ℓ​ implies that the expected payoff table has a benefit-cost form à la Fudenberg, Rand, 

and Dreber (2012). Namely, a player choosing ​C​ incurs cost ​g​ but gives benefit ​1 + g​ to the other player, whereas 
action ​D​ entails no cost or benefit. The same condition is referred to as separability in Kayaba, Matsushima, and 
Toyama (2016). The benefit-cost (b/c) ratio is given by ​(1 + g)/g​ . 
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Let ​​x​ i​ 
t​​ denote player ​i​’s information at the end of round ​t​ regarding events in 

the round as described above.15 Player ​i​’s history up to round ​t​ is the sequence  
​​h​ i​ 

t​  =  ( ​x​ i​ 
1​, …, ​x​ i​ 

t​ )​. Let ​​H​ i​ 
t​​ be the set of ​i​’s histories up to ​t​ and let ​​H​i​​  = ​ ∪​ t=1​ 

∞ ​  ​H​ i​ 
t​​ . 

Player ​i​’s (behavioral) strategy ​​σ​i​​​ is a collection ​​( ​σ​ i​ 
t​ )​ t=1​ 

∞ ​​ such that ​​σ​ i​ 
1​  ∈  Δ ​A​i​​​ and 

for ​t  ≥  2​ , ​​σ​ i​ 
t​ : ​H​ i​ 

t−1​  →  Δ ​A​i​​​ , where ​Δ ​A​i​​​ is the set of probability distributions 
over ​​A​i​​​ . Denote by ​δ  ∈  (0, 1)​ the common discount factor of the players, and let ​​
π​i​​ (σ)​ be player ​i​’s expected payoff in the repeated game under the strategy profile  
​σ  =  ( ​σ​1​​, ​σ​2​​ )​. Likewise, let ​​π​i​​ (σ | ​h​i​​ )​ be ​i​’s expected continuation payoff under ​σ​ 
following history ​​h​i​​  ∈ ​ H​i​​​ .

16 A strategy profile ​σ  =  ( ​σ​1​​, ​σ​2​​ )​ is a perfect Bayesian 
equilibrium (PBE, or simply an equilibrium) of the repeated game if for ​i  =  1​ , 2,

	​​ π​i​​ (σ | ​h​i​​ )  ≥ ​ π​i​​ (​σ​ i​ ′ ​ , ​σ​j​​ | ​h​i​​ )​

for any alternative strategy ​​σ​ i​ ′ ​​ and any private history ​​h​i​​  ∈ ​ H​i​​​ .
17 Under perfect 

monitoring, ​σ​ is a PBE if and only if it is a subgame perfect equilibrium (SPE). Under 
public monitoring, a strategy ​​σ​i​​​ is public if ​​σ​ i​ 

 t​​ is a function only of the public history ​
( ​ω​​ 1​, … , ​ω​​ t​ )​ and not that of ​( ​a​ i​ 

1​ , … , ​a​ i​ 
t​ )​. A PBE ​σ​ is a perfect public equilibrium 

(PPE) if each ​​σ​i​​​ is public. A PPE is strongly symmetric if ​​σ​1​​​ and ​​σ​2​​​ entail the same 
action after every public history.

III.  Theoretical Background

This section collects some background material that is well recognized in the 
theoretical literature but is useful for the interpretation of our experimental results.

One essential observation concerns the relation between efficiency and the 
severity of punishments. Under perfect monitoring, cooperation in every round on 
the equilibrium path can be enforced by non-lenient and non-forgiving strategies 
such as the grim-trigger strategy. Since no bad signal is observed on the equilibrium 
path, leniency or forgiveness is immaterial for the efficiency of an outcome. Under 
imperfect monitoring, however, bad signals arise even when both players cooperate. 
To achieve efficiency, hence, the strategy must be lenient in the sense that a punish-
ment is started either only after the consecutive occurrence of bad signals, or with a 
small probability after each occurrence of such a signal. Furthermore, if the players 
are concerned with efficiency a posteriori, after the punishment is triggered, then the 
strategy must be forgiving so that the cooperative phase can be restored after a fixed 
number of rounds or after the occurrence of a good signal during the punishment 
phase. However, the situation is significantly more complex in the specific case 

15 As mentioned earlier, the payoffs in the perfect monitoring treatment are randomly generated. Specifically, 
player ​i​ ’s action ​​a​i​​​ generates a random signal ​​ω​j​​​ with the same distribution as under imperfect monitoring, and ​
j​ ’s payoff is determined by his action ​​a​j​​​ and ​​ω​j​​​ . Player ​i​ observes ​​a​j​​​ but not ​​ω​j​​​ or ​j​’s payoff. In the case of perfect 
monitoring, ​​x​ i​ 

t​​ hence includes the realizations of his random payoff. See Section  IV for details of the actual 
implementation. 

16 Throughout, we consider the average discounted payoff, which equals the sum of discounted stage payoffs 
multiplied by ​1 − δ​ . 

17 Under public and private monitoring, every history of signals occurs with strictly positive probability under 
any history of actions. For this reason, we omit reference to beliefs when discussing a PBE. 
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of private monitoring. If player ​i​ believes that his opponent ​j​ is playing a strategy 
that chooses ​C​ with probability one today but is not lenient, then ​i​ ’s strategy must 
be lenient: if ​i​ observes a bad signal today and responds with ​D​ , then it will likely 
cause ​j​ to observe a bad signal and hence revert to a punishment. However, if ​i​ is 
lenient and plays ​C​ instead, it will likely keep ​j​ in the cooperative phase. After all, ​
j​ does not know that ​i​ has observed a bad signal, and since it is caused by the noise 
in monitoring, ​i​ might as well ignore it. This reasoning excludes the possibility of 
an equilibrium that entails the unconditional play of ​C​ on the path along with a 
non-lenient response to a bad signal. The theory of private monitoring suggests that ​
j​ ’s strategy must be finely adjusted in the level of leniency and forgiveness so that ​i​ 
has an incentive to play ​C​ after a good signal and ​D​ after a bad signal.18

A more specific description of an equilibrium in each case is as follows. Under 
perfect monitoring, mutual cooperation is an SPE outcome if ​δ  ≥  g/(1 + g)​ . 
For example, if we denote by ​CC​ the action-signal pair ​( ​a​i​​ , ​a​j​​ )  =  (C, C )​ , the  
grim‑trigger strategy Grim that begins with ​​a​i​​  =  C​ and plays ​C​ if ​​h​ i​ 

t​  =  (CC, …, CC )​ 
but plays ​D​ otherwise, constitutes a symmetric SPE and generates the maximum 
payoff of ​​V​​ perfect​  =  1​.

Under public monitoring, a pair ​(​σ​G​​ , ​σ​G​​)​ of grim-trigger strategies that revert 
to the punishment when the history ​​h​ i​ 

t​  ≠  (Ccc, …, Ccc)​ is also a PPE for ​δ​  
sufficiently large and ​ε​ sufficiently small.19 However, such an equilibrium entails 
a significant efficiency loss since permanent defection is triggered with probability ​
1 − ​(1 − ε)​​ 2​​ in every round.20 We can verify that among strongly symmetric 
PPE, the highest payoff is achieved by a lenient strategy profile that triggers a  

punishment with probability ​​  1 __________ ε(1 − 2ε − εg) ​ ​ 
1 − δ ____ δ  ​ g​ after a pair of bad signals ​ω  =  dd​ , 

and is given by

(3)	​​ V​​ public​  =  1 − ​  ε _ 
1 − 2ε ​ g, ​

provided that ​ε  < ​   1 ____ 2 + g ​​ and ​δ  > ​  
g
 ___________________  ε(1 − 2ε) + (1 − ε)(1 + ε) g ​​ .

In the case of private monitoring, the lack of common knowledge of histories 
becomes a major obstacle for cooperation. As mentioned in the introduction, two 
approaches to the problem have been developed in the literature as detailed below.

The belief-based approach (Sekiguchi 1997, Bhaskar and Obara 2002) attempts 
to provide a proper incentive after each history by considering a mixture of repeated 
game strategies. Specifically, consider a mixture between the grim-trigger strategy 

18 Under private monitoring with conditional independence as assumed in this paper, Matsushima (1991) shows 
that the only equilibrium of the repeated game is the repetition of a one-shot Nash equilibrium (NE) if the players’ 
strategies are restricted to the following type: ​i​ plays the same action after ​​h​i​​​ and ​​h​ i​ ′ ​​ if his belief about ​j​ ’s private 
histories ​​h​j​​​ conditional on ​​h​i​​​ is the same as that conditional on ​​h​ i​ ′ ​​ . 

19 As before, ​( ​a​i​​ , ​ω​i​​ , ​ω​j​​ )  =  (C, c, c)​ is abbreviated as ​Ccc​ . ​(​σ​G​​ , ​σ​G​​)​ is a PPE if ​(1 − 2ε)(1 − ε) − ε(2 − ε) g  
≥  1 − δ/δ g​. 

20 The equilibrium expected payoff under this grim-trigger strategy equals ​​  1 − δ ____________  
1 − δ + δε(2 − ε) ​​ , which equals ​

0.369  ≪  1​ under our parameter values (​δ  =  0.9​ and ​ε  =  0.1​). 



10	 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS� FEBRUARY 2019

Grim and the strategy AllD of choosing ​D​ always. Note that the continuation strategy 
of such a mixed strategy after each history is either AllD or again a mixture of Grim 
and AllD. The initial probability weights on Grim and AllD are chosen so that after 
every history, it is incentive compatible to revert to AllD if and only if a player 
observes a ​d​ signal.21 In one interpretation, when players are randomly matched to 
play the repeated game as in our experimental setting, a mixed strategy played by a 
single opponent corresponds to the population of opponents playing different pure 
strategies. 

The belief-free approach (Ely and Välimäki 2002, Piccione 2002) supposes 
that players play a behavioral strategy that makes the other player indifferent 
between ​C​ and ​D​ after every history. Specifically, player ​i​ ’s strategy makes 
player ​j​ indifferent between his actions independent of the history observed by  
player ​j​ . This makes player ​j​ ’s belief about player ​i ​ ’s (private) history irrelevant, 
and substantially simplifies the equilibrium analysis. This approach is useful since 
it yields the only class of equilibria under private monitoring for which explicit 
characterization of behavior and payoffs is possible for a fixed discount factor. 
Based on Ely and Välimäki (2002) and Piccione (2002), Appendix B illustrates 
a memory-one belief-free equilibrium in which the choice of a mixed action in 
every round depends only on the signal realization of the previous round. One 
behavioral prediction when the subjects play such an equilibrium is as follows. 
Let the responsiveness of a strategy be defined by the difference between the 
probability that a subject cooperates ( ​​a​i​​  =  C​ ) after a good signal ( ​​s​i​​  =  c​ ) and 
that after a bad signal ( ​​s​i​​  =  d​ ). As seen in equation (B3) in Appendix B, it is 
expressed in terms of the underlying parameters as

(4) ​ Pr​(​a​ i​ 
t+1​  =  C | ​ω​ i​ 

t​  =  c)​ − Pr​(​a​ i​ 
t+1​  =  C | ​ω​ i​ 

t​  =  d)​  = ​  
g
 ______________  δ(1 − 2ε)(1 + g) ​ .​

In this equilibrium, hence, responsiveness increases with the noise level ​ε​ . This 
belief-free strategy profile is an equilibrium not only under private monitoring but 
also under perfect and public monitoring. Consequently, if the subjects play the 
memory-one belief-free equilibrium in every monitoring treatment, then they should 
exhibit the same responsiveness in both the public and private monitoring treatments 
where ​ε  =  0.1​, and a lower responsiveness value in the perfect monitoring treatment 
where ​ε​ can be interpreted as 0. We can also verify that the highest payoff achieved 
by the class of memory-one belief-free equilibria is given by

	​​ V​​ private​  =  1 − ​  ε _ 
1 − 2ε ​ g,​

21 It is typically the case that with high discount factors, the players do not have an incentive to switch to AllD 
when observing ​​ω​i​​  =  d​ . This is the case with our specification of ​δ  =  0.9​ , and it is necessary to lower the effective 
discount factor by partitioning the supergame into several segments so that each segment is played only once in 
several rounds. See, for example, Sekiguchi (1997). 
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provided that ​ε  < ​   1 ______ 
2(1 + g) ​​ and ​δ  > ​  

g
 ___________ (1 − 2ε)(1 + g) ​​ .

22

IV.  Experimental Design

The original experiment has three treatments corresponding to the three  
monitoring structures described above. The public and private monitoring treatments 
use the payoff function ​​g​i​​ ( ​a​i​​ , ​ω​i​​ )​ given by

(5)	​​
​a​i​​\ ​ω​i​​

​ 
c
​ 

d
​ C​  46​  8​ 

D

​ 
54

​ 
16

​​  .

The expected payoffs are then generated according to (1). Our perfect monitoring 
treatment introduces the same random relationship between the payoffs and the 
action profile as follows: for each action profile ​( ​a​i​​ , ​a​j​​ )​ , player ​i​ ’s payoff in the 
perfect monitoring treatment is generated by the lottery that yields ​​g​i​​ ( ​a​i​​ , ​ω​i​​  = ​ a​j​​ )​ 
with probability ​1 − ε​ and ​​g​i​​ ( ​a​i​​ , ​ω​i​​  ≠ ​ a​j​​ )​ with probability ​ε​. For example, when 
the action profile is ​(C, C )​ , each subject (independently) receives ​​g​i​​ (C, c)​ with 
probability ​1 − ε​ and ​​g​i​​ (C, d )​ with probability ​ε​ so that

	​​ u​i​​ (C, C )  =  (1 − ε) ​g​i​​ (C, c) + ε ​g​i​​ (C, d ),​

just like in the other two treatments. It follows that our three treatments have exactly 
the same expected stage-payoff table. With our choice of ​ε  =  0.1​, it is given by

(6)	​​
​a​1​​\ ​a​2​​

​ 
C

​ 
D

​  C​  42.2, 42.2​  11.8, 50.2​   
D

​ 
50.2, 11.8

​ 
19.8, 19.8

​​    .

Note that the payoff matrix (6) is strategically equivalent to (2) for

(7)	​ g  =  ℓ  = ​  5 _ 
14

 ​  ≈  0.357.​23

22 It happens to be the case that ​​V​​ private​  = ​ V​​ public​​ in (3), which is derived under the assumption of strong 
symmetry. While the belief-free equilibrium is not strongly symmetric, ​​V​​ public​​ can also be interpreted as the highest 
belief-free equilibrium payoff under public monitoring. All the conditions on ​ε​ and ​δ​ stated in this section hold in 
our experiments including the high noise treatments discussed in Section VII. 

23 Simply apply the affine transformation ​22.4 ​u​i​​ (a) + 19.8 ​. The benefit-cost ratio mentioned in footnote 14 
hence equals ​(1 + g)/g  =  3.8​. 



12	 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS� FEBRUARY 2019

In each of the three treatments, these parameter values ensure that there exist 
equilibria in which the players cooperate with strictly positive probability at least 
initially.

The experiments use a between-subject design so that each subject participates in 
one and only one treatment. Sessions were conducted at the Center for Experimental 
Social Science lab at New York University.24 In each session, after the instructions 
are read aloud, subjects are randomly and anonymously paired via computer with 
another subject to play a supergame.25 All supergames in a session are simultane-
ously terminated after every round with probability 0.1, and subjects are randomly 
rematched to play another supergame.26 After each round ​t​ , subject ​i​ sees on his 
screen his own action choice ​​a​ i​ 

t​​ and other information that varies across different 
monitoring structures: under perfect monitoring, ​i​ ’s screen shows the opponent’s 
action choice ​​a​ j​ 

t​​ as well as the realization of the random draw that determines ​i​ ’s 
own payoff. Under public monitoring, ​i​ ’s screen shows the pair of signals ​( ​ω​ i​ 

t​ , ​ω​ j​ 
t​ )​, 

and under private monitoring, it just shows his signal ​​ω​ i​ 
t​​ about the opponent’s action 

choice. In each case, subject ​i​ also sees the possible realizations of the payoff pair 
highlighted in the payoff matrix.27 After every supergame, subjects are informed of 
the complete history of choices and signals by both players to ensure that feedback 
is the same for all treatments and that the only difference among them is the infor-
mation structure within a supergame. This process repeats itself until 75 minutes of 
play have elapsed; the first supergame to end after that marks the end of a session. 
Four sessions of each treatment were conducted. The supergames lasted between 1 
and 37 rounds, and averaged 10.3 rounds (close to the expected value of 10).28 The 
sessions were approximately 1 hour and 40 minutes, and subjects earned between 
$19.78 and $48.12 with an average earning of $33.21.29 These and other summary 
statistics are provided in Table 1.30

24 Subjects who had participated in previous experiments with randomly terminated games or a PD as a 
stage-game were excluded. 

25 Instructions and screenshots can be found at http://cess.nyu.edu/frechette/print/Aoyagi_2016a_inst.pdf. 
In the experimental instructions, the term “match” is used in place of “supergame.” The experimental interface was 
programed using z-tree (Fischbacher 2007). 

26 The length of a supergame in each session of the perfect monitoring treatment was determined by a random 
number generator whose seed is tied to the computer’s internal clock. Each session in the other treatments then used 
the same sequence of supergames as the corresponding session in the perfect monitoring treatment to control for the 
effect of the length of supergames on the evolution of play. Dal Bó and Fréchette (2011) and Engle-Warnick and 
Slonim (2006b) both document the impact of the length of supergames on behavior. 

27 As mentioned in footnote  15, the realization of a random payoff under perfect monitoring is privately 
observed as in the other cases. The screen also displays a table describing subject ​i​ ’s history ​​h​ i​ 

t−1​  =  (​x​ i​ 
1​, … , ​x​ i​ 

t−1​)​ 
up to round ​t − 1​ within the supergame. 

28 The difference in the average number of rounds results from the variation in number of supergames 
between sessions. 

29 Points are converted to dollars at a preannounced exchanged rate. Since the earnings for the first session 
of each treatment were slightly lower than expected (between $19.78 and $33.52 with an average of $28.64), 
the minimum time of play was increased from 60 to 75 minutes and the exchange rate was decreased from 0.01 to 
0.0075 for the subsequent sessions. 

30 Given the difference in the number of supergames across treatments, the analysis uses data from only the first ​​
k​n​​​ supergames in session ​n​ of each treatment, where ​​k​n​​​ is the minimal number of supergames in session ​n​ across 
treatments. For instance, since the second sessions of the three treatments have 9, 11, and 12 supergames, only the 
first 9 supergames are used in the analysis. As stated in footnote 26, the length of the ​kth​ supergame in session ​n​ is 
the same regardless of the treatment. 

http://cess.nyu.edu/frechette/print/Aoyagi_2016a_inst.pdf
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V.  Directions of Analysis

As discussed in the introduction, we are primarily interested in answering the 
following questions: (1) Do subjects cooperate under private monitoring? If so, 
how does the level of cooperation compare with those under public and perfect 
monitoring? (2) Are there any differences in the subjects’ behavior in the three 
treatments? We stress that presenting testable hypotheses is difficult given the lack of 
comprehensive theory about the equilibrium of private monitoring games. Although 
our investigations are more of an exploratory nature for this reason, we will relate 
the results to insights and predictions provided by the theory to the extent possible. 
In what follows, we provide a set of questions that provide a guide for our analysis.

Question 1 (Cooperation and coordination): Is the level of cooperation and 
coordination lower under private monitoring than under perfect or public 
monitoring?

Theory clearly suggests that it is significantly more difficult to sustain cooperation 
under private monitoring since it requires the use of intricate mixed strategies as 
seen in Section  III. The lack of a coordination device under private monitoring 
also makes it difficult for the subjects to coordinate their actions beyond round 1. 
These considerations suggest an affirmative answer to question 1.

We examine our second question on the constancy of behavior across the three 
treatments from several different perspectives. Following the literature and as 
described earlier, we say that strategies are lenient if they do not prescribe sure 
defection following a single bad signal, and forgiving if they return to cooperation 
after having played defect.

Question 2 (Leniency and forgiveness): Are strategies more lenient and forgiving 
under public and private monitoring than under perfect monitoring?

As mentioned in Section III, efficiency considerations imply that strategies under 
imperfect monitoring should be more lenient and forgiving than under perfect 
monitoring. Indeed, previous work confirms this view under public monitoring. 

Table 1— Summary Statistics

Treatments Subjects Sessions
Subjects per 

session
Supergames 
per session

Rounds per 
supergame

Subject earnings 
(US dollars)

Perfect 66 4 16, 18, 16, 16 11, 12, 19, 11 Min 1 Min 19.78
Avg. 10.3 Avg. 32.91
Max 37 Max 43.67

Public 68 4 18, 20, 14, 16 11, 11, 22, 11 Min 1 Min 23.40
Avg. 10.1 Avg. 34.87
Max 37 Max 48.12

Private 72 4 20, 18, 14, 20 12, 9, 19, 11 Min 1 Min 22.34
Avg. 10.4 Avg. 31.92
Max 37 Max 44.12
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In the perfect monitoring environment, Dal Bó and Fréchette (2018b) finds the 
grim-trigger, which is not lenient, among one of the three most frequently observed 
strategies. To the contrary, both Fudenberg, Rand, and Dreber (2012) and Embrey, 
Fréchette, and Stacchetti (2013) find that the subjects’ strategies are more lenient and 
more forgiving in imperfect public monitoring environments. A similar observation 
can be made on the strategies that best describe the subjects’ behavior in Aoyagi 
and Fréchette (2009): as noise in public information increases, the range of a “bad” 
signal that causes transition from the cooperation phase to the punishment phase 
shrinks, and the range of a “good” signal that causes transition from the punishment 
phase to the cooperation phase widens.31

Similar considerations with respect to mitigating efficiency losses associated 
with a strategy such as grim-trigger apply to private monitoring, but additional 
considerations also come into play. Under private monitoring, a strategy may be 
more lenient than under perfect monitoring if a player believes that his opponent 
plays ​C​ with high probability: in such a case a player will be reluctant to punish 
a bad signal since it increases the chance of a punishment from the opponent who 
himself does not know that his choice was transmitted as a bad signal. The answer 
to the question on forgiveness under private monitoring is more difficult to predict 
since forgiveness, if any, takes place further down the history where it is difficult to 
infer if the opponent is cooperative or punitive.

Question 3 (Memory length): Do strategies have longer memory under public and 
private monitoring than under perfect monitoring?

An affirmative answer to this question is partially implied by the affirmative 
answers to Question 2 on leniency since leniency requires the examination of history 
over the past few rounds rather than just one.32

Question 4 (Responsiveness): Is the level of responsiveness lowest under perfect 
monitoring and the same under public and private monitoring?

A memory-one belief-free strategy profile as described in Section  III is an 
equilibrium in every monitoring treatment we consider. If the subjects indeed play 
such an equilibrium, their responsiveness as defined in equation (4) should be lower 
when the monitoring is more accurate.

VI.  Results

We present our results on the original set of treatments in two parts. The first part 
is a direct analysis of cooperation and coordination rates as well as action choices 

31 The signal space is continuous and the estimated strategies shift between the cooperation and punishment 
phases based on a threshold on the public signal. Data of Aoyagi and Fréchette (2009) show that this threshold 
decreases as noise increases. 

32 As previously mentioned, leniency can be defined in terms of either the number of bad signals before action ​
D​ is chosen, or the probability with which action ​C​ is chosen after each bad signal. In the latter case, more leniency 
does not necessarily imply longer memory. 
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conditional on some histories. The second part is an analysis based on the estimation 
of strategies.

A. Cooperation Rates

Cooperation rates in the three treatments can be assessed visually in the two panels 
of Figure 1. In light of the variation in the number of supergames across sessions, 
the figure presents data in three categories: the first four supergames to the left, the 
last four supergames to the right, and a single point in the middle (labeled “other”) 
that corresponds to the average of the rates in all other supergames. As such, every 
point in Figure 1 (with the exception of the middle point) represents the average of 
four supergames, one from each session.

Observation 1: Subjects cooperate under perfect, public, and private monitoring.

Observation 1 on perfect monitoring replicates earlier results in the literature and 
extends them to the environment with random payoffs. The round 1 cooperation rate 
in the last four supergames is 65 percent, which is statistically different from 0 at 
the 1 percent level.33

Using no cooperation as a benchmark can be misleading since a positive degree 
of cooperation is typically observed even in one-shot PD experiments. However, the 

33 Throughout the paper, unless stated otherwise, statistical tests are obtained by t-tests clustering the standard 
errors by session using only the last four supergames. The clustering is to account for potential session effects. 
The interested reader is referred to Fréchette (2012). When results are referred to as not statistically significant, it 
implies a p-value greater than 10 percent. 

Figure 1. Cooperation Rates by Supergame
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observed level of cooperation in our perfect monitoring treatment is substantially 
higher than those in repeated PD experiments with similar stage-game payoffs but 
a lower discount factor that does not support cooperation in equilibrium. In fact, 
the level of cooperation here is similar to that observed by Dal Bó and Fréchette 
(2018b) in perfect monitoring repeated PD for a sufficiently high discount factor, 
and far above that for a low discount factor.34, 35 Our finding is also in line with 
that of Rand, Fudenberg, and Dreber (2015), who let subjects in a repeated PD 
experiment observe the intended action choice of the other player, but introduce 
payoff randomness through errors in the implementation of action choices; they find 
that cooperation rates in this treatment are similar to those in the standard perfect 
monitoring treatment without payoff randomness.

Turning now to public monitoring, we see in panel A of Figure 1 that the round 1 
cooperation rate in the last four supergames is 73 percent, which is again statisti-
cally different from 0 at the 1 percent level. Positive cooperation in our experiments 
is in line with the findings in the literature on various forms of public monitor-
ing (Fudenberg, Rand, and Dreber 2012, implementation errors in the subjects’ 
action choices; Aoyagi and Fréchette 2009, one-dimensional continuous signal with 
infinite support that does not statistically identify the deviator; Embrey, Fréchette, 
and Stacchetti 2013, outcomes depend probabilistically on the subjects’ action 
choices and the public signal is binary).

There is no statistical difference in the round  1 cooperation rates between 
perfect and public. However, a difference exists in cooperation rates over all 
rounds. Panel B of Figure 1 shows that the cooperation rate over all rounds in the 
last four supergames is 46 percent under perfect monitoring and 58 percent under 
public monitoring. The rates are both statistically different from 0 ( ​p  <  0.01​),  
and statistically different from each other ( ​p  <  0.01​). The existing literature 
provides no clear-cut conclusions on the comparison of overall cooperation rates 
between public and perfect, and indicates the importance of the particular specification 
of public monitoring. Fudenberg, Rand, and Dreber (2012) reports a small and non-
significant increase in overall cooperation rates when small noise is introduced into 
monitoring. Rojas (2012) examines perfect and public monitoring under different 
pairs of the continuation probability ​δ​ and the payoffs, and finds a mixed effect of 
monitoring: Moving from perfect to public, cooperation rates increase in two (​δ​ , 
payoff ) treatments but decrease in the other two treatments. Aoyagi and Fréchette 
(2009) reports a monotonically decreasing relationship between noise and all-round 
cooperation rates.36

The key finding in Observation  1 is cooperation under private monitoring.  
We see again in panel A of Figure  1 that in the last four supergames, there is 
61  percent cooperation in round  1, which is statistically different from 0 at 

34 See Appendix C. In Dal Bó and Fréchette (2018b), stage payoffs are similar to those used here; there is no 
randomness in outcomes, and cooperation is an SPE outcome if and only if ​δ  ≥  0.72​ . As seen in Figure C1, coop-
eration rates for ​δ  =  0.9​ and ​δ  =  0.5​ diverge as the subjects accumulate experience. 

35 See also the discussions after Observation 2 and in Section VII for alternative ways to evaluate the cooperation 
rates observed here in comparison with those in a one-shot PD. 

36 Aoyagi and Fréchette (2009) observes no statistical difference in round 1 cooperation rates in the treatments 
where cooperation is theoretically feasible. 



VOL. 11 NO. 1� 17AOYAGI ET AL.: MONITORING IN INFINITELY REPEATED GAMES

the 1  percent level. The cross comparison across treatments in terms of round 1 
cooperation rates reveals that the only difference is between public and private  
( ​p  <  0.01​), and that there is no statistical difference between perfect and private.37 
Panel B of Figure 1 shows that the cooperation rates over all rounds in the last four 
supergames are 46  percent under private monitoring, which is again statistically 
different from 0 ( ​p  <  0.01​). In terms of cooperation rates over all rounds, there 
is no statistical difference between perfect (46  percent cooperation) and private, 
or between public (58 percent cooperation) and perfect, but public is higher than 
private weakly significantly ( ​p  <  0.1​). These observations, which answer Question 
1, are summarized below.

Observation 2: All three monitoring structures yield strictly positive cooperation 
rates. Whether in round 1 or in all rounds, cooperation rates under private monitoring 
are lower than under public monitoring, but are not different from those under 
perfect monitoring.

We should emphasize that Observation  2 is remarkable considering the 
theoretical difficulties in sustaining cooperation under private monitoring. A useful 
comparison is with the level of cooperation in one-shot PD. Dal Bó and Fréchette 
(2018a) assembles a dataset of 157,170 choices in 15 infinitely repeated (perfect 
monitoring) and one-shot prisoner’s dilemma experiments. Using their dataset, we 
estimate a probit regression of round 1 cooperation rates on the payoff parameters ​
g​ and ​ℓ​ , discount factor ​δ​ , and indicators for subgame perfection and risk domi-
nance (as defined in Dal Bó and Fréchette 2011).38 Using this regression, we can 
predict the level of cooperation in one-shot PD under our parametrization. We find 
that the observed round 1 cooperation rate in the private monitoring treatment is 
higher by 25  percent (significant) than the prediction. A similar regression using 
only data from four one-shot PD experiments with 11,038 choices also shows that 
the round 1 cooperation rate in our private monitoring treatment is higher by 43 per-
cent (significant) than the predicted value.39 This shows that Observation 2 cannot 
be simply explained by social preferences or other behavioral hypotheses that are 
often used to explain cooperation in one-shot PD.

B. Coordination

As mentioned previously, the critical feature of private monitoring is the lack of 
a common knowledge of histories that hinders coordination. In theory, players can 
perfectly coordinate their actions under both perfect and public monitoring, but not 
under private monitoring. Thus, it is interesting to see if the subjects indeed have 

37 In addition to the description in footnote 33, statistical tests involving comparisons across treatments control 
for the random sequence of supergames (the variable of interest is regressed on a treatment dummy and on indicator 
variables for each random sequence). This is done to take into account the potential correlations due to the fact that 
the realized lengths of supergames has been shown to have an effect (albeit small) on choices (see, for instance, 
Dal Bó and Fréchette 2011). 

38 This is estimated supergame by supergame. 
39 The test is a two sample t-test that allows to account for both the variance in the data of our experiment, but 

also for the prediction error from the estimation on the meta data. 



18	 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS� FEBRUARY 2019

difficulty coordinating their actions under private monitoring. Figure 2 extracts the 
first five rounds of each supergame in the three treatments and presents the values 
of ​Pr​(​a​​ t​  =  (C, C ))​​ and ​Pr​(​a​​ t​  =  (D, D))​​ as well as their sum. It also depicts 
the values of ​Pr ​( ​a​ i​ 

t​  =  C)​​ 2​​ and ​Pr ​( ​a​ i​ 
t​  =  D)​​ 2​​ , which would be the coordination 

rates should the subjects choose their actions independently. Coordination rates  
​Pr​(​a​​ t​  =  (C, C ) or (D, D))​​ are 0.722, 0.712, and 0.660 under perfect, public, and 
private monitoring, respectively, and no statistical difference exists among them 
according to the joint test of the three monitoring treatments. In terms of pairwise 
comparison, a statistical difference exists not between perfect and public, but 
between public and private ( ​p  <  0.1​). However, the difference between public 
and private is relatively small, and it is surprising to see how much coordination 
is achieved under private monitoring after the initial round despite the difficulty 
implied by the theory. When we compare ​Pr​(​a​​ t​  =  (C, C))​​ and ​Pr​(​a​​ t​  =  (D, D))​​ 
with ​Pr ​( ​a​ i​ 

t​  =  C)​​ 2​​ and ​Pr ​( ​a​ i​ 
t​  =  D)​​ 2​​ , respectively, we find that the former is always 

higher except in the first round. In fact, the coordination rates ​Pr​(​a​​ t​  =  (C, C)
or (D, D))​​ are higher by 13 percentage points than ​Pr ​( ​a​ i​ 

t​  =  C )​​ 2​ + Pr ​( ​a​ i​ 
t​  =  D)​​ 2​​ 

for all rounds after round 1, corresponding to a 41 percent difference for perfect 
and 84 percent for public. For private, the rates are higher by 12 percentage points, 
corresponding to a 40 percent difference.40 This suggests that, to a certain extent, 
subjects have the correct expectation about the other player’s action even under 
private monitoring.

40 The difference between actual and expected is statistically significant at the 1 percent level for perfect and at 
the 10 percent level for public and private. 

Figure 2. Coordination Rates Implied by Independent Action Choice and Realized

Note: All panels A, B, and C are based on the action choice in the last four matches.
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Observation 3: Coordination rates under private monitoring are close to those 
under perfect and public monitoring. In particular, they are positive and significantly 
higher than the level implied by independent action choices.

C. Conditional Cooperation

In this subsection, we explore further how cooperation rates vary with the 
action-signal pair in the preceding round in each monitoring environment. We begin 
by focusing on cooperation rates conditional only on the signal in the preceding 
round. Figure  3 shows the rates with which player ​i​ chooses ​​a​ i​ 

t​  =  C​ in round ​
t  ≥  2​ when his signal in round ​t − 1​ is ​c​ (labeled ​​ω​ i​ 

t−1​  =  c​), when it is ​d​ (labeled ​​
ω​ i​ t−1​  =  d​ ), and when ​t  =  1​ (labeled ​t  =  1​). Clearly, cooperation rates following 
a good signal are much higher than following a bad one ( ​p  <  0.01​ in all cases). 
Another striking point is that this difference increases as the subjects accumulate 
experience. For instance, in the first supergame, the difference in cooperation rates 
following the two signals is between 23 and 26 percentage points in any treatment, 
whereas in the last supergame, the corresponding difference is 59 percentage points 
under perfect monitoring, 51 percentage points under public monitoring, and 
54 percentage points under private monitoring.

Figure 3. Cooperation Conditional on the Previous Signal
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Observation 4: In every treatment, the rate of the cooperative action ​C​ is higher 
after a good signal ​c​ about the opponent’s action than after a bad signal ​d​ about it.

Figure 3 also shows that responsiveness (the difference in cooperation rates 
following a ​c​ signal and a ​d​ signal defined by (4)) varies across treatments, and 
that round 1 cooperation rates are about the same as cooperation rates following 
a good signal under perfect and public monitoring, whereas they are different 
under private monitoring. If we suppose that the subjects play the memory-one 
belief-free equilibrium described in Section  III, then responsiveness should in 
theory be lowest under perfect monitoring at approximately 0.292, and about 
0.365 under either public or private monitoring. Our data show, however, that 
responsiveness under perfect monitoring is higher than that under public or private 
monitoring: the numbers are 0.354, 0.249, and 0.295 for the perfect, public, and 
private treatments, respectively.41 A joint test reveals that responsiveness in the 
perfect monitoring treatment is statistically different ( ​p  <  0.05​) from that in the 
other two (answering Question  4). Compared with the theoretical prediction in 
each case, the observed responsiveness is significantly different ( ​p  <  0.01​) in 
the private monitoring treatment, different but not as significantly ( ​p  =  0.094​) 
in the public monitoring treatment, and not different in the perfect monitoring 
treatment.42 We also note that responsiveness is rather sensitive to the choice of 
a specific sample. For instance, although the same predictions should apply to all 
rounds after the first, if we compute responsiveness in round 2 only, it is 0.181, 
0.236, and 0.305 for perfect, public, and private monitoring, respectively. Notice 
that responsiveness is now lower under perfect monitoring than under public and 
private monitoring (not statistically different however). The observed discrepancy 
from the theoretical prediction based on the memory-one belief-free equilibrium 
may come from a number of different sources. One important consideration is 
that strategies condition on events beyond the most recent signal. This point is  
examined in more detail later.

While the above analysis only considers the action choice conditional on the 
most recent signal, it may as well depend on one’s own action in the previous round. 
The relationship between the action choice in the present round and one’s own 
action choice and signal in the previous round is summarized in Table  2, where  
​​( ​a​ i​ 

t−1​, ​ω​ i​ 
t−1​ )​  =  (C, c)​ is abbreviated as ​Cc​, etc.

First note that cooperation rates across treatments are at similar levels when the 
subjects previously cooperated and received a good signal (the first row) and when 
they previously defected and received a bad signal (the fourth row).43 The main 
differences are in the cooperation rates after ​Cd​ and ​Dc​. Note that the higher 
cooperation rate after ​Cd​ implies more leniency, whereas the higher rate after ​
Dc​ corresponds to more forgiveness. With this interpretation, strategies under 

41 These numbers are obtained by first computing responsiveness for each subject. t-tests are performed on these 
subject averages with clustering at the session level. 

42 Responsiveness is significantly higher under perfect monitoring than under public monitoring ( ​p  <  0.01​), 
and (insignificantly) higher under perfect monitoring than under private monitoring ( ​p  =  0.104​). Furthermore, the 
levels are statistically different between public and private monitoring ( ​p  <  0.05​ ). 

43 However, they are nonetheless jointly statistically different following ​Cc​ ( ​p  <  0.01​), but not following ​Dd​. 
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public monitoring exhibit more leniency and forgiveness than those under perfect 
monitoring ( ​p  <  0.1​ and ​p  <  0.01,​ repectively), and strategies under private 
monitoring come somewhere in between in both dimensions (the rates under 
private monitoring following Dc are statistically different from those under per-
fect, ​p  <  0.01​ , and public, ​p  <  0.05​; but not following Cd). Table 2 also shows 
that subjects under private monitoring react to a negative signal more strongly 
when they cooperated: the difference between the cooperation rates after ​Cc​ and 
after ​Cd​ is the largest in this treatment.

Observation 5: In every treatment, the rates of cooperative action ​C​ vary 
substantially with the signal in the previous round as well as the action-signal pair 
in the previous round.

The analysis in this section, and Table 2 more specifically, ignores the possibility 
that a subject in the public monitoring treatment may condition his behavior on 
the public signal of his own action. This possibility under public monitoring is 
examined below.

Momentarily restricting attention to public monitoring, we note that common 
knowledge of public histories in this environment enables players to coordinate 
their behavior and simultaneously revert to the punishment or return to cooperation. 
Our question in this subsection is if the subjects in our public monitoring treatment 
do indeed use public signals as a coordination device. We examine this question 
by considering pairs of player ​i​ ’s private histories that differ from each other only 
in the realization of ​​ω​j​​​ , i.e., the public signal corresponding to ​i​ ’s own action.44  
For  example, consider a pair of player ​i​ ’s private histories ​​h​i​​​ and ​​​h ˆ ​​i​​​ at the end 
of round 1 such that ​​h​i​​  =  ( ​a​i​​ , ​ω​i​​ , ​ω​j​​ )  =  Ccc​ and ​​​h ˆ ​​i​​  =  ( ​a​i​​ , ​ω​i​​ , ​​ω ˆ ​​j​​ )  =  Ccd​ . In 
other words, the public history is ​cc​ in one case, and ​cd​ in the other case, and ​i​ ’s 
private action ​C​ is the same across these private histories. If the players cooper-
ate by coordinating behavior using the public signal as assumed in the standard 
construction of a perfect public equilibrium, then continuation play will differ 
across these histories. However, we find that this is not the case. In fact, for no pair 
of such histories in round 1 do we find significant difference in player ​i​ ’s action 
choice in round 2. In order to examine ​i​ ’s action choice in a later round, we need 
to account for the possibility that it conditions on what happened in two or more 

44 There are 863 such cases out of 8,804 choices. However, the sample is much smaller when we focus on the 
last four supergames. 

Table 2—Signal and Cooperation Rate Conditional on Previous Choice  
and Signal Combination

Perfect Public Private

​Pr​(​a​ i​ 
t​  =  C | Cc)​​ 0.946 0.922 0.921

​Pr​(​a​ i​ 
t​  =  C | Cd )​​ 0.414 0.553 0.469

​Pr​(​a​ i​ 
t​  =  C | Dc)​​ 0.223 0.470 0.351

​Pr​(​a​ i​ 
t​  =  C | Dd )​​ 0.114 0.135 0.105



22	 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS� FEBRUARY 2019

rounds ago. Because of data restriction, we constrain our analysis to the relation-
ship between ​i​ ’s action choice in round ​t​ and the public signals in rounds ​t − 1​ 

and ​t − 2​ . More specifically, we consider a pair of histories ​​h​i​​​ and ​​​h ˆ ​​i​​​ such that  

​​h​i​​  = ​ (​(​a​ i​ 
t−2​, ​ω​ i​ 

t−2​, ​ω​ j​ 
t−2​)​, ​(​a​ i​ 

t−1​, ​ω​ i​ 
t−1​, ​ω​ j​ 

t−1​)​)​​, and ​​​h ˆ ​​i​​  = ​ (​(​a​ i​ 
t−2​, ​ω​ i​ 

t−2​, ​​ω ˆ ​​ j​ 
t−2​)​,  

​(​a​ i​ 
t−1​, ​ω​ i​ 

t−1​, ​​ω ˆ ​​ j​ t−1​)​)​​ with either ​​ω​ j​ 
t−2​  ≠ ​ ​ω ˆ ​​ j​ 

t−2​​ and ​​ω​ j​ 
t−1​  = ​ ​ω ˆ ​​ j​ 

t−1​​, or  ​​ω​ j​ 
t−2​  = ​ ​ω ˆ ​​ j​ 

t−2​​ and ​​

ω​ j​ 
t−1​  ≠ ​ ​ω ˆ ​​ j​ 

t−1​​. Namely, ​i​ ’s action gives rise to two different public signals in round ​
t − 1​ or ​t − 2​ , but not both. Table 3 reports the average rate of ​​a​ i​ 

t​  =  C​ following the 
most common histories.45 As seen, the signal about one’s own action has no impact 
on the player’s action choice in all but two comparisons.46 With the caution that the 
results are based on a rather small sample, we summarize our findings as follows.

Observation 6: Subjects’ choices under public monitoring appear to ignore the 
public signal of their own action in many instances.

If the subjects ignore the signal about their own action and do not use the public 
signal as a coordination device, then the resulting play can be replicated under 
private monitoring where they do not observe the signal about their own action.47 
Observation  6 hence indicates the presence of a cooperation mechanism 
not discussed in the public monitoring literature that identifies the public signal 
as a coordination device, and also has a strong implication for a similar degree 
of cooperation under private monitoring. Observation 6, furthermore, is largely 

45 We count the number of observations for each combination of choices and signals in two consecutive rounds 
and take the four most common for each one of ​​ω​ j​ 

t−1​​ and ​​ω​ j​ 
t​​ . This results in at least 20 observations for each case. 

46 Of the two exceptions, a lower cooperation rate after ​​h​i​​  =  (Ccc, Ccc)​ than after ​​​h ˆ ​​i​​  =  (Ccc, Cdc)​ is rather 
surprising. One way to make sense of it is that some subjects try to take advantage of the leniency of their opponents 
by defecting once in a while after a ​c​ signal, but is careful not to do so after a ​d​ signal. 

47 In other words, such strategies under public monitoring are measurable with respect to the signal about the 
opponent’s action, and can be implemented under private monitoring. 

Table 3—Impact of the Signal about One’s Own Action on Cooperation 
Rates

​​a​i​​ ​ω​j​​ ​ω​i​​​ Signal (​​ω​j​​​ )

​t − 2​ ​t − 1​ ​c​ ​d​

Panel A
​Ddd​ ​D​ω​j​​ d​ 10.64 ​​>​​ ⁎​​ 5.42

​Ddc​ ​D​ω​j​​ d​ 9.52 ​≈​ 14.17

​Ccc​ ​C​ω​j​​ d​ 80.58 ​​<​​ ⁎⁎​​ 92.00

​Ccc​ ​C​ω​j​​ c​ 96.25 ​≈​ 95.06

Panel B
​D​ω​j​​ d​ ​Ddd​ 4.76 ​≈​ 5.42

​C​ω​j​​ d​ ​Ccd​ 46.00 ​≈​ 60.00

​C​ω​j​​ c​ ​Ccd​ 80.58 ​≈​ 87.10

​C​ω​j​​ c​ ​Ccc​ 96.25 ​≈​ 97.18
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consistent with our strategy estimation results where the most popular strategies 
under public monitoring are those that condition only on the signal about the 
opponent’s action choice.48

D. Leniency and Forgiveness

Leniency and forgiveness (as they are documented here) require looking beyond 
what happened in the previous round. Hence, we first examine whether the subjects’ 
action choice depends on the event from two or more rounds ago. Table D1 in 
Appendix D presents the regression of a subject’s action choice in round 3 on the 
outcomes of the first two rounds. The analysis separates the data between the two 
cases where a subject chooses ​C​ or ​D​ in round 1, and includes as regressors the 
subject’s own action choice in round 2, and his signal about the other player’s 
action choice in the first two rounds.49 As can be seen, for both public and private 
monitoring, when a subject cooperates in round 1, the opponent’s round 1 choice 
has a statistically significant impact on the choice made in round 3 (controlling for 
the outcome in round 2).

To further investigate the question of leniency and forgiveness, we study behavior 
after some key histories that are possibly longer than one round.50

Figure 4 presents the cooperation rates after histories along which a subject has 
consistently chosen ​​a​ i​ 

t​  =  C​ but has observed either one bad signal in the previous 
round or two consecutive bad signals in the two previous rounds. In other words, 
the height of the three points on the graph in panel A corresponds to the values of:

	​ Pr​(​a​ i​ 
t​  =  C | Cc, …, Cc)​,

	 Pr​(​a​ i​ 
t​  =  C | Cc, …, Cc, Cd )​,  and

	 Pr​(​a​ i​ 
t​  =  C | Cc, …, Cc, Cd, Cd )​,​

where the history ​​h​ i​ 
t−1​​ such that ​​(​a​ i​ 

1​, ​ω​ i​ 
1​)​  =  ⋯  = ​ (​a​ i​ 

t−1​, ​ω​ i​ 
t−1​)​  =  (C, c)​ 

is abbreviated as ​Cc, …, Cc​ , etc.51 As can be seen, the drop in the cooperation 
rates following a single ​d​ signal is most conspicuous under perfect monitoring, 
suggesting the use of non-lenient strategies by the subjects. The rates under 
private monitoring are similar to those under public monitoring but slightly lower.  
There is a statistical difference between perfect and either public or private  

48 However, the strategy estimation shows that the popular strategies under public and private are different. 
49 Analysis of the action choice in round 3 provides the cleanest evidence for the memory length. To reduce the 

complexity of the regression, analysis in the public monitoring treatment is restricted to the case where the public 
signal about the own action is correct in the first two rounds. 

50 See Fudenberg, Rand, and Dreber (2012) for a similar exercise. 
51 The figure only considers action choices in rounds three and above to allow for the observation of at least 

two signals. 
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( ​p  <  0.01​ and ​p  <  0.05​, respectively), but there is no statistical difference 
between the last two.52

Although identification of histories that are relevant to forgiveness is less 
straightforward, we select the following histories as relevant. For subjects who 
started by cooperating: look at their first sequence of defection and compute the 
probability that they cooperate when they observe one ​c​ signal or two consecutive ​
c​ signals. The height of the three points on the graph in panel B of Figure 4 corre-
sponds to the values of

	​ Pr​(​a​ i​ 
t​  =  C | C∗, …, C∗, Dd, …, Dd)​,

	 Pr​(​a​ i​ 
t​  =  C | C⁎, …, C∗, Dd, …, Dd, Dc)​,  and

	 Pr​(​a​ i​ 
t​  =  C | C∗, …, C∗, Dd, …, Dd, Dc, Dc)​,​

where ​C⁎​ implies either ​Cc​ or ​Cd​. As can be seen, there is more forgiveness under 
perfect than public following one cooperate signal, but less following two (these 
are jointly statistically different from each other ​p  <  0.05​). Directionally, the 
comparison between perfect and private is similar, but they are much closer to 
each other in terms of the rates following two ​c​ signals than perfect and public are. 

52 This is established by regressing cooperation on dummies if there was one or two ​d​ signals and interacted 
with a dummy for the type of monitoring (as well as indicators for the sequence of random terminations). 
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Nonetheless, the difference between public and private is not statistically signif-
icant. However, ranking the treatment in terms of forgiveness on the basis of this 
exercise is difficult since the ranks vary following one versus two cooperate signals.

We should note, however, that the analysis in this section provides only a rough 
measure of leniency and forgiveness as the strategies may condition on events 
beyond the previous two rounds. We perform a more direct analysis of leniency and 
forgiveness in the next section by estimating strategies based on the subjects’ action 
choices in all rounds of a supergame. Nonetheless, we can summarize the evidence, 
which is a partial answer to Question 2, as follows.

Observation 7: Conditional on some key histories, the levels of leniency are such 
that

	​ public  >  private  ≫  perfect.​

The ordering in terms of the forgiveness levels is not as clear except that after a 
single good signal in a punishment phase, a return to cooperation is most likely 
under perfect monitoring.

E. Estimation of Strategies

We now turn to the direct estimation of the subjects’ strategies. Our analysis is 
based on the Strategy Frequency Estimation Method (SFEM) developed in Dal Bó 
and Fréchette (2011). SFEM has now been used in multiple papers to estimate 
the strategies in repeated games, and its use is supported by Fudenberg, Rand, 
and Dreber (2012) and Dal Bó and Fréchette (2018b) who conduct Monte-Carlo 
simulations to evaluate its performance, and in addition, Dal Bó and Fréchette 
(2018b) finds that the strategies identified as most popular by the SFEM are also 
the most popular strategies elicited from the subjects using an alternative method.53 
In essence, SFEM uses maximum likelihood to estimate a mixture over a given set 
of strategies.54 The parameters that are recovered represent the estimated fraction ​​ϕ​​ k​​ 
of strategy ​k​ in the set, and the variance in the distribution of the error term. Instead 
of reporting the parameter capturing the variance in the error term, ​γ​ , we report 
the implied probability ​β  ≡ ​   1 __________ 

1 + exp​(−1/​γ ˆ ​)​
 ​​ that a cooperative action would be taken 

when it is prescribed by a strategy. This gives an idea of how well the model fits the 
data since ​β  →  1​ as ​γ  →  0​ , and ​β  →  1/2​ (a coin toss) as ​γ  →  ∞​.

We consult previous studies that use SFEM in PD games to determine which 
strategies to include. Specifically, we include all strategies that were found in a 
statistically significant proportion in any of the following papers: Dal Bó and 
Fréchette (2011); Fudenberg, Rand, and Dreber (2012) and their reanalysis  

53 Other papers using the SFEM in different contexts include Vespa and Wilson (2016) on dynamic games and 
Bigoni et al. (2015) on continuous-time games. 

54 Intuitively, the method can be described as looking for the strategy from some given set that best explains the 
observed choices of a subject in multiple supergames. It then looks for the frequency of each strategy in the entire 
sample. See Dal Bó and Fréchette (2011) for details. 
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of Dal Bó and Fréchette (2011) and Dreber et  al. (2008); Dal Bó and Fréchette 
(2018b); Fréchette and Yuksel (2017); and Embrey, Fréchette, and Stacchetti 
(2013). The strategies included in our analysis are listed in Table 4 and their finite 
automaton representations are given in Appendix E.

The three strategies in the top panel of Table 4 do not condition on the history: 
“always cooperate” (AllC), “always defect” (AllD), and a strategy that cooperates 
in the first round and defects in all other rounds (CDDD). Such strategies will 
be termed nonresponsive. All other strategies we consider are responsive in that 
transitions depend on signals. The second panel includes the well-known strategies 
of “grim-trigger” (Grim) and “tit-for-tat” (TFT) as well as their variants that 
either do not trigger a punishment after a single ​d​ or do not immediately return to 
cooperation following a single ​c​ : Grim2, Grim3, TF2T, TF3T, 2TFT, and 2TF2T.55 
Also in the second panel is the Sum2 strategy that counts the numbers of good and 
bad signals: it has an internal counter that is initially set equal to 0. The counter 
is increased by 1 every time a good signal is observed and the current value is 
below 2, and is decreased by 1 every time a bad signal is observed and the current 
value is above ​− 2​ . The counter is unchanged in other cases. Sum2 plays ​C​ if the 
counter is ​≥ 0​ and ​D​ otherwise. Sum2 was first explored in Embrey, Fréchette, and 
Stacchetti (2013). The second panel also lists the “win-stay, lose-shift” strategy 
(WSLS, sometimes referred to as “Pavlov” or “perfect tit-for-tat”) that is known 
to have some desirable properties in environments with noise (Imhof, Fudenberg, 
and Nowak 2007) but has almost never been found in statistically significant 
proportions in previous experiments. Every strategy in the second panel yields a 
sequence of ​(C, C)​ s when matched against itself. However, the third panel lists the 
suspicious versions of TFT and Sum2 (STFT and SSum2) that start by defecting, 
and yield a sequence of ​(D, D)​ s when matched against itself. The check marks 

55 TFT in the imperfect monitoring environment starts by cooperating and then chooses ​C​ if and only if ​​ω​i​​  =  c​ . 
In short, Grim-k is a variant of Grim that reverts to ​D​ after ​k​ consecutive ​d​ signals, and m-TF-n-T is a variant of 
TFT that plays ​D​ in at least ​m​ consecutive rounds after ​n​ consecutive ​d​ signals. 

Table 4—Properties of Strategies

Cooperative Responsive Lenient Forgiving Complexity

AllC ✓ 1
AllD 1
CDDD 2

WSLS ✓ ✓ ✓ 2
Sum2 ✓ ✓ ✓ ✓ 4
Grim ✓ ✓ 2
Grim2 ✓ ✓ ✓ 3
Grim3 ✓ ✓ ✓ 4
TFT ✓ ✓ ✓ 2
2TFT ✓ ✓ ✓ 3
TF2T ✓ ✓ ✓ ✓ 3
2TF2T ✓ ✓ ✓ ✓ 4
TF3T ✓ ✓ ✓ ✓ 4

STFT ✓ ✓ 2
SSum2 ✓ ✓ ✓ 4
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Table 5—Estimates of Proportion of Each Strategy

Perfect Public Private

Panel A

AllC 0.024 0.196 0.032
(0.032) (0.067) (0.038)

AllD 0.314 0.191 0.271
(0.062) (0.057) (0.077)

CDDD 0.000 0.000 0.000
(0.004) (0.025) (0.014)

Panel B
WSLS 0.022 0.029 0.000

(0.045) (0.028) (0.040)
Sum2 0.000 0.114 0.195

(0.007) (0.066) (0.056)
Grim 0.117 0.035 0.0138

(0.050) (0.028) (0.040)
Grim2 0.046 0.000 0.090

(0.034) (0.000) (0.056)
Grim3 0.023 0.025 0.097

(0.038) (0.043) (0.035)
TFT 0.176 0.000 0.075

(0.042) (0.034) (0.046)
2TFT 0.000 0.039 0.056

(0.000) (0.034) (0.066)
TF2T 0.108 0.129 0.062

(0.042) (0.059) (0.049)
2TF2T 0.079 0.157 0.000

(0.045) (0.068) (0.010)
TF3T 0.076 0.059 0.061

(0.042) (0.074) (0.049)
Panel C
STFT 0.015 0.000 0.032

(0.029) (0.045) (0.030)
SSum2 0.000 0.027 0.014

Panel D
γ 0.471 0.474 0.569

(0.040) (0.038) (0.042)
β 0.893 0.892 0.853

Panel E
Cooperative 0.671 0.783 0.683
Noncooperative 0.329 0.217 0.317

Panel F
Leniency ratio 0.514 0.824 0.776
Forgiving ratio 0.712 0.897 0.692

Panel G
Complexity	 =  1 0.338 0.387 0.304
	 =  2 0.330 0.064 0.121
	 =  3 0.155 0.168 0.208
	 =  4 0.178 0.381 0.367

Notes: Listed in panel A are unconditional strategies, panel B are responsive and cooperative, 
and panel C are responsive and noncooperative. Panels E, F, and G show total frequencies 
by feature. The leniency ratio is the ratio, amongst cooperative and responsive strategies, of 
lenient to lenient and non-lenient. The forgiving ratio is the ratio, amongst cooperative and 
responsive strategies, of forgiving to forgiving and non-forgiving.
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in Table 4 show whether these strategies are lenient and/or forgiving.56 The last 
column of the table also shows the level of complexity of each strategy by the 
scale 1– 4: it equals the number of states required when they are expressed as a 
finite automaton.57 A cooperative strategy is a strategy that starts with cooperation 
and produces cooperation with positive probability in subsequent rounds when 
matched against itself. When discussing leniency and forgiveness, we focus on 
cooperative strategies that are responsive.

The results for perfect and public monitoring reproduce some results documented 
in the literature. First, under perfect monitoring, the majority of the data can be 
accounted for by the three strategies: AllD, Grim, and TFT (Dal Bó and Fréchette 
2018a). Second, lenient and forgiving strategies are more popular under public 
monitoring than under perfect monitoring (Fudenberg, Rand, and Dreber 2012). 
Third, despite its theoretical appeal, WSLS is not observed in any significant 
proportion in any treatment. Fourth, as in Embrey, Fréchette, and Stacchetti (2013), 
Sum2 is observed in a statistically significant proportion. In other words, our results 
show that the findings in the literature are robust with respect to the specifications 
of perfect and public monitoring such as randomly generated payoffs for perfect 
monitoring, introduction of noise into observation rather than into action choice 
under public monitoring, and the cardinality and dimension of the signal space.

With respect to private monitoring, we first notice the prevalence of Sum2, 
which was first documented in Embrey, Fréchette, and Stacchetti (2013) in the 
public monitoring environment with a linearly ordered binary signal. Second, Grim 
and TFT are much less popular than under perfect monitoring. In fact, TFT and 
all of its variants are not very popular, and none of them is statistically significant 
individually (nor are they jointly significant). Third, the lenient versions of Grim 
(Grim2 and Grim3) are more popular than in any other treatment. Although 
Grim2 is not statistically significant on its own, its frequency is relatively high at 
9 percent and Grim2 and Grim3 are jointly statistically significant ( ​p  <  0.01​).  
This is in sharp contrast with perfect and public monitoring, where neither of 
these two strategies is ever statistically significant. Fourth, going from perfect to 
private, strategies become more lenient, but not more forgiving: the ratio of lenient 

strategies ​​(= ​   lenient  __________________  cooperative and responsive ​)​​  is 78 percent under private monitoring, while 

it is 51 percent under perfect monitoring ( ​p  =  0.00​). In fact, the ratio of lenient 
strategies under private monitoring (78 percent) is similar to that under public 
monitoring (82 percent) ( ​p  =  0.83​ for the equality between public and private). 
As  for forgiveness, the ratio of forgiving strategies ​​(= ​ 

forgiving
  __________________  cooperative and responsive ​)​​  

is lower under private monitoring (69 percent) than under public monitoring 
(90  percent) (insignificant at ​p  =  0.29​). However, the forgiveness level under 
private monitoring (69  percent) is similar to that under perfect monitoring 
(71 percent) (insignificant at ​p  =  0.70​).

56 Classification of leniency and forgiveness is applied only to responsive strategies. Note that Sum2 and SSum2 
are not lenient in all situations. For instance, they will play ​D​ after a single ​d​ signal in the first round. 

57 See Rubinstein (1986). 
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This finding on forgiveness hence is at odds with the result of the reduced- 
form approach in Section VIC, which shows that the highest forgiveness level 
after a single ​c​ signal was under perfect monitoring. The discrepancy may come 
from the fact that the analysis in Section VIC is restricted to behavior after 
particular histories. The conflicting findings are, however, partly reconciled by 
the observation that the estimated fraction of the TFT variants that return to 
cooperation immediately after a single ​c​ signal (TFT, TF2T, and TF3T) is higher 
(0.36 in total) under perfect monitoring than under public monitoring (0.19) or 
private monitoring (0.20).

In relation to leniency and forgiveness, we find that the strategies become more 
complex when monitoring becomes imperfect whether it is public or private. 
Specifically, the estimated proportion of strategies that has just two states in the 
automaton representation is higher under perfect monitoring (33 percent) than under 
either public (6 percent, ​p  <  0.01​) or private (12 percent, ​p  <  0.05​ ) monitoring. 
Likewise, the estimated proportion of strategies with three or four states is one-
third under perfect monitoring but slightly more than a half in both public and pri-
vate monitoring ( ​p  <  0.05​ for both comparisons). The average number of states 
equals 2.172, 2.544, and 2.638 for perfect, public, and private, respectively.

The most important differences across treatments can be gleaned by focusing 
on the top three strategies in each treatment as listed in Table 6. Notice that the top 
three strategies represent more than 50 percent in proportion in all three treatments. 
While the noncooperative strategy AllD is always very popular, characteristics of 
cooperative strategies are markedly different in the three treatments. Under perfect 
monitoring, both Grim and TFT are non-lenient. Under perfect monitoring, 2TF2T 
is both lenient and forgiving. Under private monitoring, both Sum2 and Grim3 are 
lenient, but the latter is non-forgiving. It is only under private monitoring that the 
intuitive strategy of Sum2 that counts the numbers of ​c​ s and ​d​ s is in the top three.

The evidence with respect to the strategy used answers to Question  2 and  
Question 3 and is summarized in the following.

Observation 8: Strategies under public and private monitoring are more complex 
than those under perfect monitoring. The increased complexity comes mainly from 
the lenient and forgiving variants of TFT under public monitoring, and from the 
lenient (but not forgiving) variants of Grim under private monitoring. Under both 
public and private monitoring, Sum2, which counts the numbers of good and bad 
signals and is sometimes lenient and forgiving, is important.

With these estimation results at hand, we now return to the most surprising 
finding from our experiment: that the level of cooperation under private  
monitoring is comparable to that under perfect and public monitoring. Although a 
complete analysis of the mechanism behind this finding is beyond the scope of this 
paper, we consider how the changes in strategies mitigate the effect of the change 
in the monitoring structure. First, the fraction of subjects who mostly defect varies 
across treatments: 19 percent under public monitoring, 27 percent under private 
monitoring, and 31 percent under perfect monitoring. In other words, the fraction 
of subjects adopting some form of cooperative strategies is higher under imperfect 
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monitoring. Ignore this effect for the moment and fix the fraction of subjects that 
adopt the strategy AllD of always defecting at 25 percent. We will study the effect 
of the choice of a cooperative strategy adopted by the remaining 75 percent. As seen 
in Table 6, two of the most popular cooperative strategies are TFT and Grim under 
perfect monitoring. If we assume that the 75 percent of subjects who cooperate 
use either of these strategies, then the average cooperation rate (given ​δ  =  0.9​)  
is 58 percent under perfect monitoring. If the cooperative strategy under public 
and private monitoring were also given by either TFT or Grim, then the average 
cooperation rate would be 42 percent in the case of TFT (under both public and 
private, a drop of 16 percentage points), and it would be 23 percent (under public, 
a drop of 35 points) and 24 percent (under private, a drop of 34 points) in the case 
of Grim. However, if we suppose that the cooperative strategy is 2TF2T under 
public monitoring and Sum2 under private monitoring (as indicated in Table 6), 
then the cooperation rate is 57 percent under public monitoring and 56  percent 
under private monitoring.58 That is, the observed difference in the subjects’ 
strategies almost completely compensates for the effect of the monitoring struc-
ture on cooperation rates. We can only speculate on the reason why the subjects 
adopt different cooperative strategies under different monitoring structures, but as 
this example shows, such changes can mitigate the effects of noise on cooperation 
rates.

VII.  High Noise Treatments

To study the impact of noise on cooperation under private monitoring, we 
conducted additional treatments, again one for each monitoring structure. 
In  particular, the noise is increased to ​ε  =  0.2​ as opposed to ​ε  =  0.1​ in the 
original treatments. The original goal was to see whether the differences observed 
in the first set of experiments in terms of strategies (in particular with respect to 
leniency and forgiveness) would remain at this increased level of noise. As will 
become obvious, the results for these treatments are not informative with respect 
to our original goal. Hence, these are only briefly discussed here and details are 
provided in Appendix F.

58 Although the most popular cooperative strategy under public monitoring is AllC, we consider 2TF2T since 
efficiency is clearly unaffected by changes in the monitoring technology when a nonresponsive strategy such as 
AllC is considered. 

Table 6—Top Strategies by Treatment

Monitoring

Popularity Perfect Public Private

First AllD AllC AllD
Second TFT AllD Sum2

Third Grim 2TF2T Grim3
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The round 1 cooperation rates in the three ​ε  =  0.2​ treatments are not statistically 
different from one another, and more importantly, from the prediction for a one-shot 
game based on previous PD experiments.59 These results indicate that there are little 
to no dynamic incentives to generate cooperation when ​ε  =  0.2 .​

In summary, increasing noise in monitoring from ​ε  =  0.1​ to ​ε  =  0.2​ poses 
a substantial difficulty to the subjects’ ability to cooperate, and this difficulty 
appears to be caused by the randomness in the payoffs coupled with the larger 
value of ​g  =  ℓ  =  0.541​.

Observation 9: Increasing noise from ​ε  =  0.1​ to ​ε  =  0.2​ lowers cooperation 
rates in every monitoring treatment to levels similar to what is predicted in one-shot 
PD. In particular, the level of cooperation under perfect monitoring with ​ε  =  0.2​ 
is significantly lower than what is predicted under perfect monitoring without 
random payoffs. There is no significant difference in the levels of cooperation 
among the three high noise treatments.

VIII.  Conclusion

While theory suggests the importance of the monitoring structure on the play of a 
repeated game, experimental work on the subject is still limited. This paper presents 
one approach to the problem by comparing three major monitoring structures using 
the same PD as a stage game.

Our findings from the perfect and public monitoring treatments serve as  
robustness checks of earlier results in the experimental literature. Specifically, we 
confirm the key findings from Fudenberg, Rand, and Dreber (2012) that strategies 
become more lenient and forgiving under public monitoring than under perfect 
monitoring. We find this true under an alternative specification of each monitoring 
structure as well as under an additional control on the expected stage game payoffs 
across the two monitoring treatments.

The primary focus of our analysis is on the comparison of private monitoring 
with perfect and public monitoring. While theory suggests the difficulty of 
cooperation under private monitoring, we observe that the subjects maintain almost 
the same level of cooperation under private monitoring as under perfect and public 
monitoring. Even more surprisingly, the rates of coordination on either ​(C, C )​ or ​
(D, D)​ are significantly higher than the hypothetical rates that would be obtained 
when the two players choose their actions independently at the observed rates. 
The high levels of cooperative behavior in our private monitoring environment are 
in sharp contrast with the findings of Duffy and Ochs (2009)—that cooperation is 
hard to sustain under random matching, even for relatively modest group sizes (see 
Section I). The difference suggests that experimental subjects find the constancy 
of a relationship with their partner more important than the monitoring structure 
when it comes to the decision on whether to cooperate or not.

59 This is true either if the prediction is based only on the sample of one-shot game experiments from Dal Bó 
and Fréchette (2018a) (the one indicated in Figure F1), or on the fitted relation used to form the prediction for ​
δ  =  0.9​ (see footnote 39). 
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We should emphasize that our results do not imply that cooperation will emerge 
whenever it is theoretically feasible. Indeed, low cooperation rates in our high noise 
treatments are indistinguishable from what is expected in one-shot games. Hence, 
it is most appropriate to interpret our results as demonstrating that in some private 
monitoring environments, cooperation is possible at a level comparable to that under 
perfect and public monitoring. Our results also suggest that in order to identify the 
environments conducive to cooperation, it is particularly important to isolate the 
effect of monitoring from the effect of randomness in payoffs.60

In the case where dynamic incentives emerge, we also find  
differences in behavior under the three monitoring structures. Specifically, 
a reduced-form approach based on choices after key histories, and strategy  
estimation both reveal that the behavior is more lenient under private monitoring 
than under perfect monitoring. In both cases, the leniency level is similar under pri-
vate and public monitoring. However, the comparison of forgiveness levels is less 
clear. While strategy estimation suggests similar forgiveness levels under perfect 
and private monitoring, and a higher level under public monitoring, the reduced-
form approach suggests the highest forgiveness level under perfect monitoring.

In relation to leniency and forgiveness, we find that the strategies become more 
complex when monitoring becomes imperfect whether it is public or private. 
In particular, the average number of states in the finite automaton representation 
increases as we move from perfect to public, and from public to private. 
Under  private monitoring, Sum2, which is complex and uses 4 states, is found 
to be one of the top three strategies. It is interesting to note that as in the public 
monitoring treatment of Embrey, Fréchette, and Stacchetti (2013), where Sum2 is 
first observed, our private monitoring treatment has the feature that the signal is 
binary and can be interpreted as either good or bad.

We also confirm the finding of Kayaba, Matsushima, and Toyama 
(2016), that responsiveness is not necessarily consistent with the play of a  
memory-one belief-free equilibrium across all treatments. Specifically, if  
subjects played the memory-one belief-free equilibrium in all treatments, then the  
responsiveness level should be lowest under perfect monitoring and the same 
under public and private monitoring. We observe instead that the level under  
perfect monitoring is the highest. This implies at least that such an equilibrium is 
not played in all treatments. Along with the results of our strategy estimation, we 
suspect that the restriction to memory one is among the reasons for the observed 
deviation.

A full account of the behavior reported in this experiment would require the 
development of a new theory based on the combination of such elements as 
the complexity cost of strategies, preference for efficiency, and the importance 
of intentions. In this regard, a theory of action choice based on the mental state 
as analyzed by Compte and Postlewaite (2008) may provide one direction for 

60 Perfect monitoring experiments in the literature with no randomness in outcomes find a substantially higher 
level of cooperation. Similarly, Rand, Fudenberg, and Dreber (2015) finds that randomness in outcomes have at 
most a modest impact on behavior. However, Bereby-Meyer and Roth (2006) finds that randomness slows down 
(reinforcement) learning in one-shot PD and finitely repeated PD. 
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research. The fact that the estimated strategies are more complex in a more com-
plex environment suggests that the complexity of a strategy is perceived as a cost 
by the subjects. In other words, simple strategies are preferred so long as they 
entail no efficiency loss. The Sum2 strategy is popular in the private monitoring 
treatment perhaps because it is considered the simplest rule of thumb that works 
in the environment. Substantial rates of cooperation and coordination in every 
treatment and leniency of strategies in the imperfect monitoring treatments 
both imply preference for efficiency. The  higher  responsiveness under perfect 
monitoring suggests that the subjects have a stronger incentive to react to the 
opponent’s action when his intention is clearer. The reaction can also be used to 
discipline the opponent when there is little or no noise. We view these as interest-
ing insights to guide future theory work on repeated games.

Appendix A:  Random Re-matching in Groups

Appendix B:  Responsiveness under Memory-One Belief-Free Equilibrium

Consider a memory-one behavioral strategy ​​σ​j​​​ of player ​j​ such that the probability ​

Pr ​(​a​ j​ 
t​  =  C | ​h​ j​ 

t−1​)​​ that it plays ​C​ in round ​t  ≥  2​ depends only on his signal ​​ω​ j​ 
t−1​​ in 

round ​t − 1​. Any such strategy ​​σ​i​​​ can be expressed by the two probabilities ​p​ and ​q​ 
such that

	​ Pr​(​a​ j​ 
t​  =  C | ​a​ i​ 

t−1​, ​ω​ i​ 
t−1​)​  = ​ {​

p  if ​ω​ i​ 
t−1​  =  c

​  
q  if ​ω​ i​ 

t−1​  =  d
​​​ .
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Figure A1. Random Re-matching in Groups

Source: Duffy and Ochs (2009) 
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Let now ​W(c)​ denote ​i​ ’s continuation payoff from round ​t​ on when ​j​ observes ​​
ω​ j​ 

t−1​  =  c​ in round ​t − 1​ , and ​W(d )​ denote ​i​ ’s continuation payoff when ​j​ observes ​​

ω​ j​ 
t−1​  =  d​ in round ​t − 1​. Since ​​σ​j​​​ makes player ​i​ indifferent between playing ​C​ and ​

D​ , we should have

(B1)	​ (1 − δ ) g  =  δ(1 − 2ε)​[W(c ) − W(d )]​, ​

where the left-hand side is ​i​ ’s payoff gain in the current round from playing ​
D​ rather than ​C​ , and the right-hand side is the increase in continuation  
payoff from playing ​C​ rather than ​D​ , which increases the probability of player ​j​ 
observing ​​ω​j​​  =  c​ by ​1 − 2ε​.61 Next, if player ​j​ observes ​​ω​ j​ 

t−1​  =  c​ in round ​t − 1​ 
and player ​i​ plays ​D​ in round ​t​ , then ​i​ ’s continuation payoff from round ​t​ on is 
given by

	​ W(c)  =  (1 − δ )​{p(1 + g) + (1 − p) ⋅ 0}​ + δ​{(1 − ε) W(d ) + εW(c)}​.​

However, if player ​j​ observes ​​ω​ j​ t−1​  =  d​ in round ​t − 1​ and player ​i​ plays ​D​ in round ​
t​ , then ​i​ ’s continuation payoff from round ​t​ on is given by

	​ W(d )  =  (1 − δ )​{q(1 + g) + (1 − q) ⋅ 0}​ + δ​{(1 − ε) W(d ) + εW(c)}​.​

These equations together imply

(B2)	​ W(c) − W(d )  =  (1 − δ )( p − q)(1 + g).​

Combining (B1) and (B2), we obtain

(B3)	​ p − q  = ​  
g
 ______________  δ(1 − 2ε)(1 + g) ​ .​

When player ​j​ plays ​​σ​j​​​ satisfying (B3), player ​i​ is indifferent between playing ​
C​ and playing ​D​ at every history. It follows that the strategy profile ​(​σ​i​​ , ​σ​j​​ )​ with 

61 Note that the gain from playing ​D​ does not depend on ​j​ ’s action when ​g  =  ℓ​ as assumed. 
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both ​​σ​i​​​ and ​​σ​j​​​ satisfying (B3) is an equilibrium. When ​​σ​i​​​ and ​​σ​j​​​ both begin with ​
C​ in round 1, we can verify that a player’s expected payoff in this equilibrium is 
given by

	​ 1 − ​ 
g {1 − p + ε( p − q)}

  _________________  (1 − 2ε)( p − q)  ​  =  1 − δ(1 + g)(1 − p) − ​  ε _ 
1 − 2ε ​ g.​

The highest equilibrium payoff is hence achieved when ​p  =  1​ , and is given by ​
1 − ​  ε _____ 1 − 2ε ​ g​.

Appendix C:  Cooperation under Perfect Monitoring in Dal Bó  
and Fréchette (2018b)

In Dal Bó and Fréchette (2018b), each session in the ​δ  =  0.5​ treatment has 
at least 19 supergames, while the 3 sessions in the ​δ  =  0.9​ treatment have 12, 
18, and 19 supergames. Given that there are at most 19 supergames in the current 
experiments, Figure  C1 includes at most 19  supergames to make comparison 
easier. Dal Bó and Fréchette (2018b) specifies the stage payoffs as ​​u​i​​ (D, C )  =  50​ , ​​
u​i​​ (C, C )  =  32​ , ​​u​i​​ (D, D )  =  25​ , and ​​u​i​​ (C, D )  =  12​ , making the stage game 
strategically equivalent to (2) for ​g  =  25/7 − 1  ≈  2.57​ and ​ℓ  =  13/7  ≈  1.86​.

Figure C1. Cooperation Rates in Dal Bó and Fréchette (2018b) by Supergame
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Appendix D:  Choices in Round Three

Table D1—Does the Opponent’s Choice Two Rounds Ago Affect Choices?

Dependent variable: Cooperation in round 3 (​​1​{​a​ i​ 
3​=C}​​​)
Perfect Public† Private

Case
Defect in 
round 1

Coop. in 
round 1

Defect in 
round 1

Coop. in 
round 1

Defect in 
round 1

Coop. in 
round 1

Action ​C​ in round 2 (​​1​{​a​ i​ 
2​=C}​​​) 0.219 0.243 0.155 0.203 0.081 0.373

(0.050) (0.071) (0.146) (0.045) (0.106) (0.118)
Signal ​c​ in round 2 (​​1​{​ω​ i​ 

2​=c}​​​) −0.105 0.270 −0.028 0.300 −0.021 0.407
(0.010) (0.102) (0.041) (0.111) (0.049) (0.095)

Pair ​(C, c)​ in round 2 (​​1​{(​a​ i​ 
2​, ​ω​ i​ 

2​)=(C, c)}​​​) 0.411 0.189 0.367 0.143 0.195 −0.119
(0.087) (0.111) (0.200) (0.087) (0.110) (0.145)

Signal ​c​ in round 1 (​​1​{​ω​ i​ 
1​=c}​​​) 0.018 0.048 0.064 0.166 −0.003 0.108

(0.061) (0.056) (0.040) (0.062) (0.081) (0.023)
Constant 0.130 0.203 0.138 0.190 0.262 0.150

(0.074) (0.071) (0.033) (0.041) (0.049) (0.048)

Observations 246 406 196 343 290 402

Note: Clustered standard errors are in parentheses. 
	 †	Restricted to cases where the public signal about i’s action ​​ω​j​​​ equals his action ​​a​i​​​  for ​t  =  1​.
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Appendix E:  Strategies Included in the Estimation

Table E1—Unconditional and Two-States Automata

C

D

C D

C D

 t 1

 t 2

C D

 t 1

 t 1

 t 2
 t 2

 t 1  t 1

 t 2

 t 2

C D

 t 2
 t 2 t 1

 t 1

C D

Automaton 
 name in text Diagram Perfect and public Private

Panel A
AllC

AllD

CDDD

Panel B
Grim   t 1   =  { a i   = C, ω = (c , c)}  

  t 2    = ¬   t 1   
  t 1   =  { a i   = C,  ω i   = c} 

 t 2   = ¬  t 1   

TFT   t 1   =  { ω i   = c} 
 t 2   = ¬  t 1   

WSLS   t 1   =  { ω i   = c} 
 t 2   = ¬  t 1   

STFT   t 1   =  { ω i   = c} 
 t 2   = ¬  t 1   
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Table E2—Automata with More Than Two States

C C D

 t 1
 t 2 t 2

 t 1

C C C D

 t 1

 t 2 t 2 t 2

 t 1  t 1

C C D

 t 2
 t 2 t 2

 t 1

 t 1  t 1

C C C D

 t 1 t 1

 t 1

 t 2  t 2  t 2
 t 2

C D D

 t 1
 t 1

 t 1

 t 2
 t 2

 t 2

C C D D

 t 1

 t 1 t 1

 t 1
 t 2 t 2

 t 2

 t 2

C C

D D

 t 1
 t 1

 t 1  t 2
 t 2
 t 2

 t 2

 t 1

C C

D D

 t 1
 t 1

 t 1

 t 1

 t 2 t 2  t 2
 t 2

Automaton  
 name in text Diagram Perfect and public Private

Grim2   t 1   =  { a i   = C, ω = (c , c)} 
 t 2   = ¬  t 1   

  t 1   =  { a i   = C,  ω i   = c} 
 t 2   = ¬  t 1   

Grim3   t 1   =  { a i   = C, ω = (c , c)}  
  t 2    = ¬   t 1   

  t 1   =  { a i   = C,  ω i   = c} 
 t 2   = ¬  t 1   

TF2T   t 1   =  { ω i   = c} 
 t 2   = ¬  t 1   

TF3T   t 1   =  { ω i   = c} 
 t 2   = ¬  t 1   

2TFT   t 1   =  { ω i   = c} 
 t 2   = ¬  t 1   

2TF2T   t 1   =  { ω i   = c} 
 t 2   = ¬  t 1   

Sum2   t 1   =  { ω i   = c} 
 t 2   = ¬  t 1   

SSum2   t 1   =  { ω i   = c} 
 t 2   = ¬  t 1   
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Appendix F:  Cooperation and Coordination in the High Noise 
Treatments

With the payoff function ​​g​i​​​ held fixed as in (5), and the noise ​ε  =  0.2​ , the stage 
game in these high noise treatments have ​g  =  ℓ  =  20/37  ≈  0.541​ as opposed to ​
0.357​ in the original treatments, and are explicitly given as follows:62

(F1)	​​
​a​1​​\​a​2​​

​ 
C

​ 
D

​  C​  38.4, 38.4​  15.6, 46.4​   
D

​ 
46.4, 15.6

​ 
23.6, 23.6

​ ​   .

As ​g​ and ​ℓ​ increase, the meta study of Dal Bó and Fréchette (2018b) predicts 
a modest decrease in cooperation rates in infinitely repeated PD under perfect 
monitoring without randomly generated payoffs. In line with the expectation, 
the cooperation rates in the high noise treatments are lower than in the original 
treatments for every monitoring structure (Figure F1): the drop in the round 1 coop-
eration rates from ​ε  =  0.1​ to ​ε  =  0.2​ is significant with ​p  <  0.01​ for each case. 
However, the size of the reduction is much larger than predicted by Dal Bó and 
Fréchette (2018b): the cooperation rates for ​ε  =  0.2​ are statistically lower than the 
meta-analysis based prediction in all three monitoring treatments ( ​p  <  0.01​ ). This 
is in contrast with the ​ε  =  0.1​ perfect and public monitoring treatments where the 
cooperation rates are not statistically different from the prediction.63

As noted in Section VII, round 1 cooperation rates in those treatments are not 
different from what is predicted for one-shot PD games. This diminished role of 
dynamic considerations in behavior is also visible in Figure F2 on the frequency 
of cooperation rate after a good versus bad signal, and in Figure F3 on the realized 
coordination rates. Specifically, Figure F2 shows very little separation between 
cooperation rates following good versus bad signals. Compared with the differences 
of ​56​ (perfect), ​44​ (public), and ​35​ (private) percentage points in the original ​
ε  =  0.1​ treatments, the differences in the ​ε  =  0.2​ treatments are ​23​ (perfect),  
​11​ (public), and ​− 4​ (private) percentage points with only the one for perfect being 
statistically significant ( ​p  <  0.1​ ).

Figure F3 is the counterpart of Figure 2 and shows the realized coordination 
rates for ​ε  =  0.2​ as well as what would be expected if choices were independent 
within a pair. Consistent with the observations made so far, it shows that the realized 
coordination rates are nearly identical to what would be implied by independent 
action choices. In fact, comparing the total coordination rates to the sum  
​Pr ​( ​a​ i​ 

t​  =  C )​​ 2​ + Pr ​( ​a​ i​ 
t​  =  D)​​ 2​​ , we find statistical difference only for perfect 

monitoring (difference ​=  0.06​ , ​p  <  0.01​ ). The figure also shows that total 
coordination is lower than for ​ε  =  0.1,​ and most of it is accounted for by 
coordination on defection.

62 A total of 96 subjects participated in 6 sessions, 2 each for perfect, public, and private monitoring treatments, 
with the number of subjects per session equal to either 12 or 24. The subjects played at least 11 supergames in every 
session, and the data analysis below focuses on supergames 8 through 11. In two of the six sessions, a software bug 
ended one supergame earlier than it should have. 

63 The rate is lower than the prediction ( ​p  <  0.05​ ) in the ​ε  =  0.1​ private monitoring treatment. 
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Figure F1. Round One Cooperation Rates by Treatment in the Last Four Supergames

Note: Predictions generated using the metadata from Dal Bó and Fréchette (2018a).

Figure F2. Cooperation Conditional on the Previous Signal with ​​ε  =  0.2​​ (equivalent to Figure 3 )
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Considering all rounds together, we find cooperation rates under public and private 
monitoring not statistically different from each other, and both higher than those 
under perfect monitoring ( ​p  <  0.1​ and ​p  <  0.01​, respectively). The differences, 
however, are not substantial, being at most 5  percentage points between perfect 
(27 percent) and private (32 percent).
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