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Abstract

This paper studies collusion in an infinitely repeated game when the oppo-
nent’s past actions are observed only through a noisy public signal. Attention is
focused on a threshold strategy, which switches between cooperation and pun-
ishment phases based on the comparison between the realized public signal
and a threshold. The paper develops a simple theory on when such a strat-

egy supports the most efficient symmetric (perfect public) equilibrium, and
characterizes its payoff as a function of noise in monitoring. The theoretical
predictions are then tested in laboratory experiments. It is found that subjects’
payoffs (i) decrease as noise increases, and (ii) are lower than the theoretical
maximum for small noise, but exceed it for large noise. It is also estimated that
the subjects’ strategies are best described by a simple threshold strategy that
looks only at the most recent public signal.
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1 Introduction

Imperfection in monitoring is an integral part of many competitive situations in

reality. It is a particularly important topic in the field of industrial organization,

where the signals are subject to various external shocks. Firms’ ability to cooperate

in such environments is of clear interest to researchers as well as regulation author-

ities. A key prediction of the theory of repeated games is that when players are

patient, a simple strategy can sustain collusion even under imperfect public moni-

toring, where opponents’ actions are observed only through a noisy public signal.

In the repeated prisoners’ dilemma (PD), for example, it is known that any payoff

in an important class of symmetric equilibria can be achieved through the use of a

grim-trigger strategy, which reverts to the one-shot Nash equilibrium in the event

of particular signal realizations.

This paper is aimed at testing the theory of imperfect public monitoring in

infinitely repeated games: It provides a theoretical characterization of the maximal

equilibrium payoff as a function of noise in monitoring, and then uses laboratory

experiments to test the theoretical predictions. The main focus of the paper is on

the comparative statics of the effect of noise on the players’ payoffs, and on the

strategies they use to achieve collusion.

While imperfect monitoring has attracted much attention in economic theory,

empirical work on the subject has been limited because of some fundamental dif-

ficulties. For example, it is not easy to identify the exact public signal the firms

use to coordinate their actions: it could be price, shares in a nationwide or regional

market, industry output, or the combination of any of these and other indicators.

There are also difficulties with identifying the firms’ strategic variables and their

payoff structure. Free from these problems, a laboratory experiment in a controlled

environment is considered an ideal alternative for the study of the subject.

Green and Porter (1984) are the first to provide a theoretical analysis of re-

peated games with imperfect public monitoring: In their model of quantity-setting

oligopoly, the market price serves as a noisy public signal of firms’ output quantities

because of demand fluctuations. They put forth an equilibrium based on the trigger

strategy as follows: The firms produce at the jointly monopolistic level as long as

the realized price is above a certain threshold, but revert to the one-shot Cournot

quantity for a fixed number of periods when it falls below the threshold. Because

of the random component in demand, periodic price wars occur on the equilibrium

path.
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As in Green and Porter (1984), the present model has a one-dimensional public

signal (price) whose distribution is monotonically related to the players’ actions

(quantities). While the set of repeated game strategies is large, we suppose that

players coordinate their actions based on a simple rule. In particular, we suppose

that players use a threshold strategy, which uses thresholds on the public signal as

a coordination device: The players agree to take one action profile if the realized

public signal is above a certain value but take another action profile if it falls below

it.

Specifically, we consider a symmetric stage game with two actions for each player:

As in the PD, the first action gives rise to an efficient symmetric profile, while the

second action gives rise to an inefficient symmetric (one-shot) Nash equilibrium.

We characterize the set of equilibrium payoffs when the two players’ repeated game

strategies are symmetric, sequentially rational, and public in the sense that today’s

actions are determined only by past public signals. In this case, it is known from

the bang-bang property (Abreu et al. (1990)) that the highest equilibrium payoff

is sustained by a grim-trigger strategy. Based on this fact, we identify sufficient

conditions for the optimal grim-trigger strategy to trigger the punishment based on a

threshold condition. We then proceed to derive an explicit and testable link between

the maximal symmetric equilibrium payoff and the level of noise in monitoring.1

In our experiments, we use a simple two-person two-action PD as the stage game,

and assume a simple distribution for the noise component of the public signal. The

distribution allows for an explicit derivation of the maximum payoff as a function of

noise in monitoring. We have five treatments depending on the level of noise from

zero to infinity. In theory, positive cooperation is possible for the three low noise

treatments, while the best equilibrium entails no cooperation for the two high noise

treatments. We have two major objectives in analyzing data from our experiments.

First, we compare the players’ actual payoffs against the theoretical maximum de-

rived as above, and examine how they change with the noise in monitoring. Our

findings are as follows:

1) The level of cooperation is positive for any noise level.

2) The level of cooperation is lower than the theoretical maximum for small noise

1This should be contrasted with the qualitative conclusion of Kandori (1992) that the set of

(symmetric and asymmetric) perfect public equilibrium payoffs strictly expands as monitoring be-

comes more accurate. We are unaware of any quantitative characterization of equilibrium payoffs

as a function of noise in monitoring.
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but higher than that for large noise.

3) The level of cooperation decreases as noise increases.

4) For large noise for which theory predicts no cooperation, the level of cooper-

ation is no higher than that in a one-shot game.

We also find a distinctive pattern in the evolution of play. In the low noise

treatments for which cooperation is possible in theory, we observe that subjects

increase the level of cooperation as they accumulate experience. In the high noise

treatments, on the other hand, the subjects begin to behave more non-cooperatively

as they become more experienced.

As stated above, we find that reducing noise in monitoring increases the level of

cooperation. It should be emphasized that this is the first experiment to identify

such a relationship between the noise in monitoring and the level of cooperation in

the standard imperfect public monitoring setting. This result is far from obvious

for the following reasons: First, as is well known, experiments on the one-shot PD

often generate positive levels of cooperation. Given that their subjects cooperate

even with no histories, these experiments may be interpreted as suggesting that past

histories would play an insignificant role in their decisions in repeated games. The

present experiment rejects this view. Second, our finding is at odds with those of

some experiments on imperfect monitoring. These experiments, which model imper-

fect monitoring in ways significantly different from the present one, find no increase

in cooperation when monitoring becomes “more accurate.”2 Third, sustaining co-

operation in a repeated game requires the ability to perform non-trivial reasoning

even if it only involves a simple strategy. Our finding suggests that the subjects do

in fact possess such capabilities.

Our second objective is to estimate the subjects’ repeated game strategies. For

this, we identify the strategy that best describes the data from a class of strategies

that use thresholds. Specifically, we consider a class of strategies which start out in

the cooperation phase, switch to the punishment phase when the public signal falls

below a certain threshold, and return to the cooperation phase after some number

of periods provided that the signal then is above another threshold. It can be seen

that this class encompasses those strategies that are most frequently discussed in

the literature: Included in this class are the trigger strategies as in Green and Porter
2As discussed in the next section, these experiments deviate in some important ways from the

standard models of imperfect public monitoring.
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(1984) as well as the tit-for-tat strategy. In all but one noise treatment, we find that

the subjects use only the most recent public signal in determining today’s action: In

other words, they choose the cooperative action today if the public signal yesterday

is above a certain threshold, and choose the non-cooperative action otherwise.

It should be noted that our laboratory experiments are designed in strict accor-

dance with the underlying assumptions of the tested theory. First, by the standard

identification of the continuation probability with the discount factor, an infinitely

repeated game is replaced by a repeated game with a random termination point.

The noise is taken to be independent and identically distributed across periods and

has full support regardless of actions. Payments to subjects are designed so that

they are bounded and reveal no more information than the public signal during

the course of play.3 Each pair of subjects understand that they observe the same

stochastic signal after every period, and how its probability distribution is related

to their actions.

The organization of the paper is as follows. In the next section, we present a

brief review of the related literature. Section 3 presents a model of a repeated game

with imperfect public monitoring and Section 4 proves the optimality of a threshold

strategy and characterizes its payoff. The experimental design is described in Section

5. Section 6 reports the results of our experiments: We first test the theoretical

prediction on the players’ payoffs and then estimate their strategies. We conclude

in Section 7 with some discussions.

2 Related Literature

Most empirical work on repeated games with imperfect monitoring analyzes the data

from the 1880’s Joint Executive Committee (JEC) railroad cartel, with a special

emphasis on the specification of the timing of regime shifts, i.e., switches between

cooperation and punishment phases in the repeated game.4 Early work assumes that

regime shifts follow a Bernoulli distribution (Porter (1983), Lee and Porter (1984)),

while some later work uses the Markovian chain in the estimation (Cosslett and Lee

(1985)). Porter (1985) takes a detailed look into what triggers the regime shifts,

the effect of market structure, and the determinants of price war duration. Ellison

(1994), again using the JEC data, tests the Green and Porter (1984) model. In

3See Section 6.
4Green and Porter (1984) suggest that such regime shifts follow a Markov process of order equal

to the length of punishment periods.
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contrast to the prior estimates that were closer to the Cournot level, he finds collusive

behavior to be much closer to the monopoly level. He identifies several factors as

statistically significant determinants (i.e. triggers) of regime shifts. However, the

estimated mechanism is not strong enough to deter cheating. Furthermore, he finds

evidence of secret price cutting, which is not predicted by the model.

Experimental economics has focused much attention on the possibility of coop-

eration in various models of oligopolies including the PD and public goods games.5

For repeated games with perfect monitoring, the results of laboratory experiments

generally indicate that repeated play generates cooperation strictly above the one-

shot Nash equilibrium level and below the first-best level. However, there is no

definitive conclusion on the strategies that players use to achieve cooperation. For

example, there exists conflicting evidence as to the use of trigger strategies.6 It

should also be noted that most of the early results need to be interpreted with cau-

tion as they pertain to repeated games with an “unknown horizon,” where subjects

are not informed of how long the game will last.7

Experiments on imperfect monitoring include Feinberg and Snyder (2002), Cason

and Khan (1999), and Holcomb and Nelson (1997). These papers introduce monitor-

ing imperfection in rather specific ways. Cason and Khan (1999) study a repeated

public good experiment and compare standard perfect monitoring with perfect, but

delayed monitoring of past actions. They do not find any significant difference in

the levels of contributions between the two treatments. Feinberg and Snyder (2002)

consider a version of the repeated PD where each subject observes his own payoff

in each period. They introduce imperfection by occasionally manipulating those

payoff numbers, and compare the treatments with and without the ex post revela-

tion of such manipulation. Less collusive behavior is found in the latter treatment.

Holcomb and Nelson (1997), on the other hand, study a repeated duopoly model in

which information about the opponent’s quantity choice is randomly changed 50%

of the time. They conclude that such manipulation “does significantly affect market

outcomes” (p. 79). It should be noted that the formulation of imperfect monitoring

5See Holt (1995) for a literature review.
6See, for example, Sell and Wilson (1991), Feinberg and Husted (1993), and Engle-Warnick and

Slonim (2002).
7See Roth and Murnighan (1978), who point out that such a game yields significantly different

results from an infinitely repeated game. They propose, to properly replicate an infinitely repeated

game with discounting in an experimental setting, to terminate the game after each period with a

fixed probability.
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in these papers is not in line with the assumptions of the standard theory. For ex-

ample, in Feinberg and Snyder (2002) and Holcomb and Nelson (1997), monitoring

is imperfect but private since players in these models do not necessarily observe the

same signal.8

In contrast to the above models, formulation of imperfect monitoring in this

paper strictly matches that of the standard theory. The distinguishing feature of

our model is the assumption that the public signal is a one-dimensional real vari-

able. This assumption has the following advantages: First, it closely replicates the

oligopoly models where price serves as the public signal. Second, this specification

naturally incorporates a monotone relationship between the signal and action: the

higher the public signal, the more likely the other player has cooperated. This re-

lationship is easy for the subjects to understand, and also justifies the use of the

threshold strategy.

Besides imperfection in monitoring, some recent experiments look at factors

that affect players’ cooperative behavior. Duffy and Ochs (2003) study the effects

of fixed versus random pairing in a repeated game. For parameter values that can

sustain cooperation even with random matching, they find cooperation emerge only

in the fixed pairing case. Dal Bo (2003) compares a repeated game with random

termination against that with a fixed and known length. He finds that cooperation

in the former treatment is at a higher level.9

One of the main focuses of the present paper is the analysis of the players’

strategies in repeated games. This is the subject of some recent experiments as

follows. Mason and Phillips (2001) study the use of trigger strategies in a repeated

Cournot duopoly game with perfect monitoring. They estimate the duration and

severity of punishment by changing the stage payoffs corresponding to deviations.

They conclude that evidence is consistent with the use of trigger strategies and that

behavior is more consistent with the use of a strategy with long and mild punishment

phases. Engle-Warnick and Slonim (2002) study the strategies played by subjects

in repeated trust games with perfect monitoring. They look for the strategy that

best fits the observed play from the set of pure strategies that can be expressed as

deterministic finite automata, and conclude that some subjects use a grim-trigger

8Cason and Khan (1999) and Holcomb and Nelson (1997) use finite horizon games but do not

specify what information was given to their subjects about the duration of the game.
9A much earlier experiment by Roth and Murnighan (1978) also studies the effect of the con-

tinuation probability on the level of cooperation. However, their experiment matches subjects to

computerized opponents.
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strategy.10

In comparison with the above papers, the threshold specification in the present

paper allows for a direct estimation of the subjects’ strategies based on a standard

econometric technique.

3 Model

The set I of n players play a symmetric game infinitely often.11 Player i’s action

ai in the stage-game is chosen from the set Ai = {a0i , âi}. Let A = A1 × · · · × An

denote the set of action profiles a = (a1, . . . , an) of all players. After each period,

players do not observe each other’s actions but observe a random public signal z ∈ R
whose probability distribution is determined by the action profile a ∈ A played in

that period. Denote by h(z | a) the density of the public signal z under the action
profile a, and by H(z | a) the corresponding cumulative distribution. In the Cournot
model with stochastic demand, for example, ai and z correspond to firm i’s output

quantity and the realized price level, respectively.

Player i’s stage-payoff when the signal realization is z is given by wi(ai, z). It

should be noted that i’s payoff depends on other players’ actions only through the

public signal z, and hence does not provide more information than z itself.

Given the action profile a, let gi(a) be player i’s expected stage-payoff:

gi(a) =

Z
R

wi(ai, z)h(z | a) dz.

We assume that the stage-game (A, (g1, . . . , gn)) is a PD:

gi(a
0
i , â−i) > gi(â) > gi(a

0) ≥ gi(âi, a
0
−i).

In other words, â = (â1, . . . , ân) is the efficient symmetric profile, and a0 = (a01, . . . , a
0
n)

is a one-shot Nash equilibrium as well as a mutual minmax profile. Furthermore, a0i
is a profitable one-shot deviation from the efficient profile â. Denote the one-shot

Nash equilibrium payoff by g0 = gi(a
0) and the efficient payoff by ĝ = gi(â).

A t-length public history is the history of signals z in periods 1 through t. A t-

length private history of player i is the history of signals z and i’s actions in periods
10 It should be noted that this estimation technique is not practical for games with a long expected

horizon. In Engle-Warnick and Slonim (2002), the continuation probability is such that the expected

length of the repeated game is five periods. It is ten in our case.
11While our experiment is on two-person games, the theory is presented for n-person games as

this entails little extra cost.
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1 through t. The set of t-length public histories is given by Rt, while the set of

t-length private histories of player i is given by Rt × At
i. Player i’s (pure) strategy

is a function σi :
S∞
t=0 (R

t × At
i) → Ai. It is a public strategy if it is a function of

the public history alone.

Let δ < 1 denote the players’ common discount factor. Given a strategy profile

σ, the expected payoff to player i is given by

πi(σ) = (1− δ)
∞X
t=1

δt−1 gti ,

where gti is the expected stage-payoff in period t under the probability distribution

induced by σ. The strategy profile σ is a (pure) equilibrium if for every i, πi(σ) ≥
πi(σ

0
i, σ−i) for any strategy σ0i. An equilibrium σ = (σ1, . . . , σn) is public if σi is a

public strategy for each i. A public equilibrium is perfect if σi is a best response to

σ−i for each i after every public history, and is (strongly) symmetric if σ1 = · · · = σn.

4 Symmetric Equilibrium Payoffs

Our objective is to identify the set of symmetric perfect public equilibrium payoffs.

As shown by Abreu et al. (1990), this can be accomplished by examining the

following class of “grim-trigger” equilibria. For this, suppose that player i plays a

public strategy σ̂i that starts with âi, and keeps playing âi as long as the realized

public signal z falls in a certain (Borel) subset Q of R but reverts to the minimax

action a0i forever otherwise. Let σ̂ = (σ̂1, . . . , σ̂n) be the symmetric profile of such

a strategy, and v be the expected payoff associated with σ̂. By the stationarity of

play, v must satisfy

v = (1− δ)ĝ + δ
©
v P (z ∈ Q | â) + g0 P (z /∈ Q | â)

ª
, (1)

where P (z ∈ Q | â) =
R
z∈Q h(z | â) dz is the probability that the public signal falls

in set Q under the action profile â. Solving (1) for v, we get

v =
(1− δ)ĝ + δg0 P (z /∈ Q | â)

1− δP (z ∈ Q | â) . (2)

It is clear from (2) that the larger the value of P (z ∈ Q | â), the closer to ĝ is the
payoff v. For σ̂ to be an equilibrium, playing âi in the cooperation phase must be

incentive compatible for player i: For any alternative action ai 6= âi, v and Q must
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satisfy

v ≥ (1− δ)gi(ai, â−i) + δ
©
v P (z ∈ Q | ai, â−i) + g0 P (z /∈ Q | ai, â−i)

ª
. (3)

Solving (3) for v, we get

v ≥ (1− δ)gi(ai, â−i) + δg0 P (z /∈ Q | ai, â−i)
1− δP (z ∈ Q | ai, â−i)

. (4)

Eliminating v from (2) and (4), we obtain

1− δP (z ∈ Q | ai, â−i)
1− δP (z ∈ Q | â) ≥ gi(ai, â−i)− g0

ĝ − g0
. (5)

We make the following assumptions about the distribution of the public signal:

Assumption 1 The unilateral deviation a0i from the symmetric action profile â

shifts down the distribution of z as measured in the likelihood ratio:

h(z0 | â)
h(z | â) ≥

h(z0 | ai, â−i)
h(z | ai, â−i)

for any z0 ≥ z.

In a Cournot model, for example, Assumption 1 corresponds to assuming that

a profitable increase in production lowers the distribution of the price. As seen,

Assumption 1 requires thatH(· | â) first-order stochastically dominateH(· | a0i , â−i).
The following theorem shows that under Assumption 1, the most efficient symmetric

perfect public equilibrium payoff is replicated by a threshold grim-trigger strategy,

which reverts to the punishment if and only if the public signal falls below a certain

threshold.

Proposition 1 Suppose that Assumption 1 holds and let v be the maximal sym-
metric perfect public equilibrium payoff of the repeated game. If v > g0, then there

exists a (pure) grim-trigger strategy profile σ̂ such that v = πi(σ̂). Furthermore, σ̂i
can be taken to be a stationary threshold grim-trigger strategy that begins with âi

and continues with âi as long as the realized public signal z is above some threshold

k (i.e., Q = (k,∞)), but reverts to a0i otherwise.

Proof. See the Appendix.

Let s : A → R be a (deterministic) symmetric function of the action profile a,

and x be a real-valued random variable whose distribution is independent of a. For
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the rest of this paper, we assume that the public signal takes the following additive

form:

z = s(a) + x.

In line with the assumption that z has full support, assume that x has a strictly

positive density f over R. Denote the corresponding cumulative distribution by F .

It follows that h and f are related through

h(z | a) = f(z − s(a)) for each z ∈ R and a ∈ A.

It is not difficult to verify that Assumption 1 is implied by the following set of

assumptions on s and f :

Assumption 2 s(a0i , â−i) ≤ s(â).

Assumption 3 f(x−y) f(x0−y0) ≥ f(x−y0) f(x0−y) for any x ≥ x0 and y ≥ y0.12

It should be noted that Assumption 3 holds for a wide class of distributions

including normal and gamma distributions. We now turn to the characterization

of the set of equilibrium payoffs in this setup. Proposition 1 allows us to focus on

threshold grim-trigger strategies. Define

l =
gi(a

0
i , â−i)− g0

ĝ − g0
> 1 and d = s(â)− s(a0i , â−i) ≥ 0.

Namely, l is the (normalized) one-shot gain from a deviation to ai, while d is the

sensitivity of the public signal measured by the change in its expected value following

such a deviation.

Let σ̂ = (σ̂1, . . . , σ̂n) denote the threshold grim-trigger strategy profile that

begins with â and reverts to a0 when z falls below the threshold k as specified in

Proposition 1. We can rewrite (2) and (5) respectively as:

v =
(1− δ)ĝ + δg0 F (k − s(â))

1− δ {1− F (k − s(â))} , (6)

and

1− δ {1− F (k − s(â) + d)}
1− δ {1− F (k − s(â))} ≥ l. (7)

12The function f satisfying this condition is known as a Polya function of degree 2 (PF2) (Karlin,

1968). Note that f is PF2 if and only if the function f̂ : R2 → R+ defined by f̂(x, y) = log f(x−y)
is supermodular.

11



Let K(δ) denote the set of thresholds k for which the above incentive compatibility

condition holds:

K(δ) = {k ∈ R : k satisfies (7)} .

By construction, K(δ) is a closed set. In the Appendix, it is also shown that K(δ)

is an interval. There exists a threshold grim-trigger equilibrium that supports the

action profile â if and only if K(δ) 6= ∅.13 By (6), the optimal threshold k = k∗(δ)

that maximizes v is the smallest element of K(δ):

k∗(δ) = min K(δ). (8)

It is also clear from (7) that K(δ) 6= ∅ requires d > 0. The following proposition

summarizes our observation.

Proposition 2 Suppose that Assumptions 2 and 3 hold. There exists a grim-trigger
equilibrium σ̂ that plays the symmetric action profile â in the cooperation phase if

and only if K(δ) 6= ∅. In this case, the threshold grim-trigger equilibrium that plays

â in the cooperation phase and uses the optimal threshold k∗(δ) yields the payoff

v∗(δ) =
(1− δ) ĝ + δg0F (k∗(δ)− s(â))

1− δ + δF (k∗(δ)− s(â))
.

Otherwise, v∗(δ) = g0.

As an index that does not depend on specific payoff numbers, we introduce the

following normalization of v∗(δ):

y∗(δ) =
v∗(δ)− g0

ĝ − g0
.

It can be verified that y∗(δ) ∈ [0, 1] is unaffected by a positive affine transformation
of the payoff numbers.14 By Proposition 2, y∗(δ) can be explicitly written as

y∗(δ) =
1− δ

1− δ + δF (k∗(δ)− s(â))
(9)

if K(δ) 6= ∅ and y∗(δ) = 0 otherwise.

13By Proposition 1, if there exists no threshold grim-trigger equilibrium, then there exists no

grim-trigger equilibrium which supports v > g0.
14That is, y∗(δ) stays the same when we add, subtract, or multiply a positive constant to the

players’ stage-payoffs.
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5 Experimental Design

The experiment tests the theory developed in the previous sections in the following

environment. The expected stage payoffs are specified as follows:

1 \ 2 L H

L 25, 25 15, 28

H 28, 15 16, 16

.

As seen, L (“low output”) corresponds to the cooperative action and H (“high

output”) represents the opportunity for a profitable one-shot deviation.15 Note that

â = (L,L) and a0 = (H,H) in the notation of the previous section.

The public signal z is generated through z = s(a) + x with the deterministic

function s of the action profile and a random variable x specified as follows: The

function s is given by
1 \ 2 L H

L 20 18

H 18 16

and the random variable x has the following distribution:

f (x) =
1

2β
e−

|x|
β , and F (x) =

(
1− 1

2e
− x
β if x ≥ 0

1
2e

x
β if x < 0,

(10)

where β > 0.16 As can be readily verified, f satisfies Assumption 3. Moreover, the

parameter β represents the level of noise in the public signal since

E[x] = 0 and Var(x) = 2β2.

From (9), we can write the normalized maximum symmetric equilibrium payoff as

y∗(δ) =

⎧⎨⎩
1−δ

1−δ+ δ
2
e
k∗(δ)−20

β

if K(δ) 6= ∅

0 otherwise.

The explicit description of the set K(δ) of admissible thresholds is found in the

Appendix.
15Our choice of this particular stage-game is based on the fact that it scores high on the indexes

proposed by Rapoport and Chammah (1965) and Roth and Murnighan (1978) that correlate with

the level of cooperation in the infinitely repeated PD with perfect monitoring.
16This distribution is simple enough to allow for the analytical derivation of the optimal threshold

k∗(δ). See the Appendix.
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Figure 1: y∗ as a function of β (δ = 0.9)

In the actual treatment, we need to (i) bound the subjects’ payoffs while allowing

z to have full support as assumed by the theory, and (ii) end each session in finite

time. For (i), we have the subjects receive the expected stage payoffs gi(a) at

the conclusion of the experiment instead of having them receive the (stochastic)

payoffs wi(ai, z) after each period.17 For (ii), we interpret the discount factor as

a continuation probability and terminate the game after each period with a fixed

probability. We set the termination probability equal to 0.1 so that the effective

discount factor δ = 0.9. Note that the theory in Section 4 holds precisely under

these alternative specifications.

The experiments proceed in the following steps. First, subjects are provided

17 In this specification, hence, the public signal z indicates the opponent’s action choice but does

not directly affect the players’ payoffs. This design hence abstracts from the psychological impact

of the payoffs as analyzed by Bereby-Meyer and Roth (2004). Alternatively, we could have paid the

subjects wi(ai, z) after each period of play for some (bounded) function wi. This payment method,

however, would have involved presenting a complex function in the instructions to the subjects.
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with the basic information about the game they will play. They are then matched

in pairs to play a repeated game with imperfect public monitoring. As mentioned

earlier, this repeated game has stochastic length and terminates in finite time almost

surely.18 The sequence of play between any pair of subjects is referred to as a cycle.

At the conclusion of every cycle, the subjects see on the screen their own payoffs in

that cycle. They are then randomly rematched to play a new cycle. The information

provided to the subjects at the outset includes: (i) The length of a cycle is randomly

determined by the termination probability 0.1. (ii) They play against a randomly

chosen subject in the session. (iii) The distribution of the random shocks to the

public signal is given by (10).19 The random matching for each new cycle is done

in a round robin manner: A subject is matched with someone new as long as it is

possible, and matched with someone they have played with previously thereafter.20

The first cycle to end after one hour of play marks the end of the session. Therefore,

different sessions have different numbers of cycles.

In the experiments, we use four different values of β: They are β = 0 (no noise

= perfect monitoring), β = 1 (low noise), β = 4 (medium noise), and β = 10 (high

noise). Figure 1 plots y∗ ≡ y∗(0.9) as a function of β. In addition to the above

four treatments, we conduct a control treatment where subjects are anonymously

and randomly matched after every period of play. This control hence eliminates the

repeated game effect (i.e., δ = 0), and is designed to provide a benchmark for the

first four treatments with respect to the level of cooperation. From the theoretical

perspective, the one-shot environment in this treatment is equivalent to having

infinitely large noise.21 For this reason, we refer to this last treatment as β = ∞.
The length of those sessions is set equal to 75 periods, which is approximately the

average number of periods in the other treatments. For the control treatment, the

term cycle refers to the block of initial 15 periods and every successive block of 10

periods.

Subjects were recruited through announcements in undergraduate classes, adver-

tisements in the student newspaper, flyers posted on campus, and e-mail advertise-

18All games played in the same session terminate simultaneously.
19The instructions given to the subjects can be found at

http://homepages.nyu.edu/ gf35/print/afinstructions.pdf.
20As it happened, the subjects were matched with someone they played with previously in only

14% of the cases.
21 In actual implementation of the control treatment, we let the subjects observe their actions.

With random and anonymous rematching after every period, however, the level of monitoring should

be irrelevant.
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Treatments

β = 0 β = 1 β = 4 β = 10 β =∞
Sessions 2 2 2 2 2

Subjects 24 14 26 16 20 20 20 26 16 20

Cycles 8 10 6 7 4 5 5 8

Periods 74 91 73 78 66 75 73 69 74 75

Table 1: Subjects, cycles and periods per session

ment at the Ohio State University. This resulted in recruiting a broad cross section

of undergraduate students. At the end of each experimental session, subjects were

paid $0.017 for every point they accumulated in the experiment. Earnings ranged

from $20.35 to $36.55. Details about the number of subjects and periods in each

treatment are provided in Table 1.22

6 Results

6.1 Payoffs

We first examine the subjects’ payoffs. Note that in the continuation probability

formulation, the sum of stage payoffs for the duration of the game corresponds to

the average discounted payoff of the infinitely repeated game. For each given value

of β, let v̄(β) be the sum of stage payoffs averaged over all cycles and sessions, and

let

ȳ(β) =
v̄(β)− g0

ĝ − g0

be the normalization of v̄(β). When the subjects play a symmetric equilibrium of

the repeated game, then ȳ(β) should lie between the one-shot NE level 0 and the

maximal symmetric equilibrium level y∗(β) for each β.23

We refer to the three treatments (β = 0, 1, 4) for which cooperation is possible

according to the theory (i.e., y∗(β) > 0) as the cooperation treatments, and the

two treatments (β = 10, ∞) for which it is not (i.e., y∗(β) = 0) as the non-

cooperation treatments. The general evolution of play between the cooperation and

non-cooperation treatments is strikingly different: Figure 2 plots ȳ(β) by treatment

22The β = 0 session with 14 subjects had a crash after the end of cycle 8, and was re-started for

two additional cycles. The β =∞ session with 16 subjects had 1 crash.
23 In the experiment, β is changed while δ = 0.9 is fixed. Hence, y∗ is indexed by β instead of δ.
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Figure 2: Evolution of ȳ by treatments

and by cycle. (The unlabeled line corresponds to the β =∞ treatment.) This figure

shows that ȳ has an upward trend over time for β = 0, 1, and 4, and an opposite,

downward trend for β = 10 and ∞. In other words, subjects appear to improve
their ability to cooperate over time when cooperation is theoretically possible, but

learn not to cooperate otherwise. As seen, ȳ(β) is much higher in the first set of

treatments, and seems to increase as noise decreases. As for the second set, both

treatments have relatively close ȳ(β). Diagrammatically, we have:

ȳ(0) > ȳ(1) > ȳ(4) >> ȳ(10) ≈ ȳ(∞) > 0,

indicating that ȳ has the same relative ordering as y∗. A few more aspects of this

figure are worth noting: For all treatments, the average payoffs start out almost

identically, yet begin to differ substantially by cycle 3. Furthermore, by cycle 3 they

almost reach the level they will eventually keep in the end.

In order to concentrate on stable behavior, the analysis in what follows excludes

data from the first two cycles or the cycles that occur in the first 20 periods of

play.24

Table 2 lists the values of y∗(β) and ȳ(β) for each treatment. ȳ(β) is positive

24Note that 20 is the expected number of periods for 2 cycles. In all but one session, the first 2

cycles last at least 20 periods. The exception is one session of the β = 0 treatment where the first

2 cycles only had a total of 3 periods of play.
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Treatment y∗(β) ȳ(β)

β = 0 1 0.845

(0.021)

β = 1 0.948 0.774

(0.025)

β = 4 0.486 0.695

(0.033)

β = 10 0 0.467

(0.027)

β =∞ 0 0.418

(0.017)

Standard deviations in parentheses.

Table 2: y∗(β) and ȳ(β) by treatments

Treatments β = 1 β = 4 β = 10

β = 0 0.017 0.000 0.000

β = 1 0.031 0.000

β = 4 0.000

Table 3: p-values of the one-sided Mann-Whitney test that ȳ decreases with noise

for both the cooperation and non-cooperation treatments at the 1% significance

level. ȳ(β) lies in the predicted interval [0, y∗(β)] for two of the three cooperation

treatments, but not for the non-cooperation treatments. In either case, it is not

close to y∗(β): it is too low when β = 0 and 1, and too high for all other treatments.

It should also be noted that ȳ(10) and ȳ(∞) appear comparable. Each of these
observations will be analyzed in turn.

That ȳ(β) decreases with β is formally established in Table 3, which gives the p-

values of a Mann-Whitney test of the hypothesis that the ȳ(β) for β on the left (row)

is equal to the ȳ(β) for β in the top (column) against the one sided hypothesis that

the former is greater than the latter.25 Every test is statistically significant at the

5% level. On the other hand, the hypothesis that ȳ(10) = ȳ(∞) cannot be rejected
(p = 0.108, two-tailed Mann-Whitney test).26 The results of these tests support

25For all such tests, per subject averages are used instead of all the subject-cycle averages because

it is likely that ȳi are correlated accross cycles for a given individual.
26Both ANOVA and Kruscal-Wallis tests reject at the 1% level the null hypothesis that the
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Figure 3: Evolution of cooperation: Rates of L and (L,L) by cycles

the general theoretical predictions that cooperation is easier to sustain when noise

is small, and that cooperation under sufficiently large noise is as difficult as in the

one-shot environment.27 On the other hand, t-tests reject the hypothesis that ȳ is

equal to y∗ at the 1% level for each treatment. In other words, the subjects’ play

does not conform to the most efficient symmetric equilibrium.

In contradiction to the theory, both ȳ(10) and ȳ(∞) are significantly positive.
This is similar to the positive levels of cooperation observed in experiments on the

one-shot PD. To be precise, Figure 3 describes the evolution of the rate of the

cooperative action ai = L as well as that of the action profile (L,L). The observed

level of cooperation is relatively high when compared to those in related experiments

on the PD. For example, it is significantly higher than that reported by Duffy and

Ochs (2003) or Dal Bo (2003): In the random matching treatment of Duffy and

Ochs, the rate of cooperation drops to almost 0% by the end. In the one-shot

treatment of Dal Bo, the rate of cooperation is a little more than 5% by the end.

We believe that this difference is attributed to the selection of the payoffmatrix: Our

payoff numbers, which are designed to generate high levels of cooperation under the

perfect monitoring treatment, raised the level of cooperation in the non-cooperation

treatment has no effect on y for β = 0, 1, 4, and 10.
27This conclusion does not change even if each session is treated as the unit of observation: If

observations are correlated within a session, one could argue that each session should be treated as

a single data point. To address this concern we can average ȳ by session and use a Mann-Whitney

test to show that ȳ is higher for β = 1 and β = 4 than for β = 10 and β =∞. The one-sided null
hypothesis is rejected with a p-value of 0.01. In fact, ȳ in any session of the cooperation treatments

is higher than that in any session of the non-cooperation treatments.
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Figure 4: Rates of the cooperative choice L in period 1 by cycles

Treatments β = 1 β = 4 β = 10 β =∞
β = 0 0.630 0.287 0.000 0.000

β = 1 0.441 0.000 0.000

β = 4 0.000 0.000

β = 10 0.230

Table 4: p-values of the two-sided Mann-Whitney test that the rates of the cooper-

ative choice L in period 1 are equal across treatments

treatments as well.28

When the subjects play the most efficient symmetric equilibrium, their period

1 action should equal ai = L when β = 0, 1, or 4. Under this hypothesis, hence,

the data must always exhibit action L in period 1 of any cycle in any cooperation

treatment. Having found that the rate of cooperative action in period 1 is only

39.1% in their repeated public goods experiments, Sell and Wilson (1991) reject the

hypothesis that their subjects use trigger strategies. In comparison, the rates of

period 1 cooperation in our cooperation treatments are higher. Furthermore, the

level of period 1 cooperation in those treatments increases over the course of each

28According to all four indices proposed by Rapoport and Chammah (1965) and Roth and

Murnighan (1978), our PD is expected to generate more cooperation than any of the three PD

matrices used by Duffy and Ochs (2003) and Dal Bo (2003).
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session (Figure 4). By the last cycle, the rate of period 1 cooperation is 85% in the

cooperation treatments. On the other hand, the rate of period 1 cooperation in the

non-cooperation treatments is much lower at 41% in the last cycle. Table 4 reports

the p-values for the test of the hypothesis that period 1 cooperation is the same

across different treatments. The hypothesis that they are the same across all coop-

eration treatments cannot be rejected.29 Neither can be the hypothesis that they are

the same across the non-cooperation treatments. On the other hand, we can reject

the hypothesis that they are the same between the cooperation and non-cooperation

treatments. However, for all treatments, t-tests reject at any conventional level the

hypothesis that the rates of period 1 cooperation equal unity.

6.2 Strategies

We next turn to the analysis of the strategies. As mentioned in the Introduction,

we focus on “threshold strategies” that switch between cooperation and punishment

phases based on thresholds on the public signal. This class includes variations of

trigger and tit-for-tat strategies that are most often discussed in the experimental

analysis of repeated game strategies, as well as some form of “private” strategies that

choose actions based on one’s own actions in the past. We use standard likelihood

ratio tests to examine if any particular specification of a threshold strategy describes

the observed pattern of play. In all but one treatment, we find that the best fitting

strategy is one that uses only the most recent public signal for transition between the

phases. The analysis in this subsection excludes data from the control treatment.

Note first that any strategy that supports cooperation above the one-shot NE

level must condition the current choice on the past public signals. In fact, this is

what we observe in this experiment. In the perfect monitoring (β = 0) treatment,

for example, if both players cooperated in the last period, each player cooperates in

the current period 94% of the time. On the other hand, if one player cooperated and

the other defected in the last period, then the rate of cooperation by the former in

the current period decreases to 43%. The same trend can be found in the imperfect

monitoring treatments. Figures 5, 6, and 7 shows how a player who cooperated in

the previous period chooses his action in the current period as a function of the most

recent public signal z. In the β = 1 and β = 4 treatments, the rate of cooperation is

29Neither ANOVA nor Kruscal-Wallis rejects the null hypothesis that the treatment has no impact

on the rate of period 1 cooperation for β = 0, 1, and 4 (p-value > 0.1).
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clearly an increasing function of z.30 Even in the β = 10 treatment where the theory

predicts no cooperation, we see the cooperation level increase around z = 17.5.

6.2.1 Threshold strategies

While the above relationship between z and the rate of cooperation can be a conse-

quence of many different strategies, we suppose that the subjects’ behavior follows

some simple rules. Specifically, we suppose that it is expressed by a finite automa-

ton, which consists of a finite number of states as well as behavior and transition

rules as follows: In the finite automaton representation of a strategy, a player is in

one of the states in every period. The behavior rule determines the action he should

choose today as a function of the current state, and the transition rule determines

tomorrow’s state as a function of the current state as well as the public signal and

his own action choice today.31 A threshold strategy with T+1 states (T = 1, 2, . . .) is

a finite automaton with T +1 states with the behavior and transition rules specified

as follows. The behavior rule specifies action L (cooperation) in state 0, which corre-

sponds to the cooperation phase, and action H (non-cooperation) in states 1, . . . , T ,

which correspond to the punishment phase. The transition rule is described as fol-

30 In Figure 6, this observation holds with the exception of the first column, which has only one

observation.
31 In a usual specification of a finite automaton, transition is assumed independent of one’s own

action. We have chosen a more general specification here in order to explicitly consider a possible

adjustment a player may make after his own mistake.
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lows: The initial state is state 0, and the state in the next period is either state 0

or state 1 depending on the public signal z and the player’s own action ai in the

current period.32 When in state t (t = 1, . . . , T − 1), unconditional transition to
state t + 1 takes place in the next period. When in state T , the state in the next

period is either state T again or state 0 depending on the public signal z and the

player’s own action ai. The transition at states 0 and T can be described in more

detail as follows:

State 0: Stay in state 0 if the public signal z is above threshold a when the own

action is L, or if z is above another threshold a + b1 when the own action is H.

Move from state 0 to state 1 otherwise.

State T : Move from state T to state 0 if the public signal z > a + b2 + b3 when

the own action is L, or if z > a + b2 when the own action is H. Stay in state T

otherwise.

In Figure 8, for example, the number above each arrow indicates the threshold

condition to be satisfied for the corresponding transition when the present action is

L, and the number below each arrow indicates the same when the present action is

H. We allow each threshold to be +∞ or −∞. Note that the threshold grim-trigger
strategy discussed in Section 4 is a threshold strategy with T = 1, b2 = ∞ and

b1 = b3 = 0.33 A trigger strategy with a fixed punishment length T as discussed

by Green and Porter (1984) is also a threshold strategy with b2 = −∞ and b1 =

b3 = 0. Furthermore, the tit-for-tat strategy in the perfect monitoring environment

is obtained by setting T = 1, a ∈ (s(L,H), s(L,L)] = (18, 20], b1 = b3 = −2, and
b2 = 0. Note that a threshold strategy with b2 > −∞ has the punishment phase

possibly longer than T periods. In general, a threshold strategy is public in the sense

defined in Section 3 if b1 = b3 = 0. Otherwise, a threshold strategy is a private

strategy which conditions its action choice on one’s own private history. Note,

however, that the on-the-path action is publicly determined even if b1 6= 0 and/or
b3 6= 0. Therefore, if a threshold strategy gives rise to a symmetric equilibrium with

perfection after every public history, then the associated payoff is still bounded from

above by v∗ (or its normalization y∗) described in Section 4.

32Of course, when the player follows the behavior rule, then his action in state 0 is L. We let the

transition depend on the own action choice in order to explicitly account for the possiblity that a

player chooses an action different from that specified by the behavior rule by mistake.
33When the game is of finite length, an equivalent strategy is obtained by letting b1 = 0 and T

larger than the length of the game.
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Figure 8: General threshold strategy with T = 2

For our discussion, we find it convenient to express the action choice by a thresh-

old strategy without explicit reference to the states. Identify 1 with the cooperative

action L and 0 with the non-cooperative action H, and for any sequences of public

signals z1, z2, . . . and own actions ci1, ci2, . . ., let

sit = 1 for t ≤ 1,

and define si,t+1 and kit (t ≥ 1) recursively by

kit =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a if sit = 1 and cit = 1

a+ b1 if sit = 1 and cit = 0

a+ b2 if si,t−T+1 = · · · = sit = 0 and cit = 1

a+ b2 + b3 if si,t−T+1 = · · · = sit = 0 and cit = 0,

∞ otherwise.

(11)

and

si,t+1 = 1{zt>kit}, (12)

where for any condition A, 1{A} = 1 if A holds and = 0 otherwise. It can be seen

that ki,t−1 and sit (t = 1, 2, . . .) equal the threshold and action choice, respectively,

prescribed by the T -state threshold strategy in state t when the public signals are

z1, z2, . . . , zt−1 and the own action choices are ci1, ci2, . . . , ci,t−1 in periods 1, . . . , t−1.
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In actual estimation, we use a stochastic version of the threshold strategy instead

of the deterministic definition given above. This is necessary in order to explicitly

incorporate the possibility of mistakes by subjects, and to capture possible asym-

metry across them. Specifically, we make the following modifications to (11) and

(12): First, we introduce a parameter γ0 and reformulate the threshold condition as

si,t+1 = 1{γ0zt>κit} (t ≥ 1). (13)

Clearly, (13) is equivalent to (12) if γ0 > 0 and κit = γ0kit.
34 We suppose that κit

is given by (sit = 1 for t ≤ 1):

κit =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α+ νi if sit = 1 and cit = 1

α+ νi + γ1 if sit = 1 and cit = 0

α+ νi + γ2 if si,t−T+1 = · · · = sit = 0 and cit = 1

α+ νi + γ2 + γ3 if si,t−T+1 = · · · = sit = 0 and cit = 0

α+ νi + γ4 otherwise.

(14)

In (14), note that the parameters α, γ1, γ2, γ3, γ4 are all assumed common across

subjects, and that only νi is indexed by i. The relationship κit = γ0kit will be

restored if γ4 =∞ and

a =
α+ νi
γ0

, b1 =
γ1
γ0

, b2 =
γ2
γ0

, b3 =
γ3
γ0

. (15)

The term νi, which is the only term indexed by i, is supposed to capture possible

asymmetry across the subjects: The larger is νi, the higher the threshold and hence

more likely is subject i to play the non-cooperative action H. Technically, νi is

treated as correlated random effects, and is assumed to be a random variable with

the normal distribution N(ψζi, σν) for some constants ψ, σν and ζi. The variance σν
and the factor of proportion ψ are common across subjects, and are to be estimated

from the data. On the other hand, ζi is set equal to the fraction of times that subject

i chooses H in period 1 of each cycle under estimation: ζi serves as a proxy for i’s

tendency to play the non-cooperative action given that any threshold strategy would

play action L in period 1.35 We assume that νi’s are independent across subjects,

and use them to test the symmetry assumption of the theory.
34γ0 is required for a technical reason: It will allow the error term uit introduced later to have

the unit variance.
35We assume that the mean of νi is proportional to ζi in order to deal with the initial conditions

problem. (See Heckman (1981) or Chamberlain (1980) for the static case.) Under an alternative

assumption that νi ∼ N 0, σ2ν , the consistency of our estimate would require the (unlikely) inde-
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β = 0 β = 1 β = 4 β = 10

α -1.437*** -0.819*** -0.569*** -0.430***

(0.127) (0.090) (0.102) (0.150)

ψ 1.698*** 1.313*** 1.278*** 1.393***

(0.210) (0.379) (0.250) (0.250)

ρ 0.265§ 0.363§ 0.295§ 0.183§

LL -781.234 -577.886 -809.018 -774.420

Obs. 1908 1112 1360 1258

*, **, *** indicate statistical significance at 10%, 5%, and 1% respectively.
§ indicates statistical significance at 1% using a likelihood ratio test.

Table 5: Estimates of the random choice strategy

We introduce another element of randomness in the form of a random shock term

which represents errors made by subjects. More specifically, for a random variable

uit, we suppose that i’s action choice ci,t+1 in period t+1 is determined in reference

to κit + uit rather than κit itself.36 In other words, ci,t+1 is determined by

ci,t+1 = 1{γ0zt>κit+uit}. (16)

We assume that uit is independent across subjects and across periods, and has

the standard normal distribution N(0, 1). One intended effect of specifying the

shock term uit as in (16) is as follows: When the realized public signal zt is close

to his threshold κit
γ0
, subject i makes errors more often than when zt is far from

it.37 Together, (13) and (16) define a limited dependent variable model with lagged

dependent variables.

6.2.2 Testing of the random choice strategy

As a benchmark, we first estimate a random choice strategy, for which the expected

probability of each action (H and L) is the same throughout the game. Specifically,

pendence of ci1’s and νi’s. (See Wooldridge (2002) for a clear expostion of the initial conditions

problem and solutions to it.) The log likelihood is estimated using quadrature techniques with a

twelve points Gauss Hermit quadrature. Weights and abscisae can be found in Abramowitz and

Stegun (1972).
36By modeling deviations as random shocks, we ignore any underlying motive for those deviations.
37An alternative specification is one where the probability of mistakes is independent of the

realized value of the public signal. Such specification, however, is not compatible with the standard

estimation techniques.
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the estimated equation is given by

ci,t+1 = 1{α+νi+uit<0},

where νi and uit are as defined in the previous section. Note that this is obtained

from the general model (16) by setting γ0 = γ1 = γ2 = γ3 = γ4 = 0. Table 5 reports

the estimates of this benchmark model, where

ρ =
σ2ν

σ2ν + 1

is used as a substitute to σ2ν as is customary for random effects estimates. As one

would expect, the positive estimate of the coefficient ψ on ζi indicates that someone

who is less likely to cooperate in period 1 is less likely to do so in any other period.

The constant term α increases with noise, which implies that increasing noise tends

to decrease cooperation. The random-effects specification is not rejected in any

treatment, indicating that tendencies to cooperate vary across the subjects.38

6.2.3 Estimation of general threshold strategies

We now turn to the estimation of general threshold strategies. A few comments are

in order: First, as noted earlier, automatic transition from state 1 to state 2, ...,

from state T − 1 to state T in the original specification of a threshold strategy is

captured by setting γ4 = ∞ in (14). However, when γ4 = ∞, uit fails to give the
desired random effect through (16). For this reason, we set γ4 equal to a finite value

in our estimation.39 Although the choice of any particular value for γ4 is arbitrary,

we set γ4 = γ0z − α − ψ, where z is the highest realized value of the public signal

z in each treatment. The action choice implied by (16) for this γ4 is the same as

that for γ4 =∞ for the observed signal value zt and the mean values of νi and uit.

However, the two action choices differ from each other when νi + uit takes a large

38When testing for the significance of the random effects specification, the fact that the null

hypothesis is at the boundary of the parameter space is properly dealt with. See Gutierres, Carter,

and Drukker (2001).
39Alternatively, γ4 could also be estimated from the data. In this case, however, the interpre-

tation of the estimated strategy would become difficult since T would no longer be the minimum

punishment length. Furthermore, it will also be seen shortly that the best estimate of T is always

1. In this sense, it does not appear important for our qualitative conclusions whether the value of

γ4 is fixed this way or is estimated.
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β = 0 β = 1 β = 4 β = 10

α 9.543 4.410*** -0.245*** -0.318*

(42.103) (1.157) (0.084) (0.168)

γ0 0.564 0.283*** 0.026*** 0.008*

(2.335) (0.988) (0.007) (0.005)

γ1 -0.237 0.010 0.804*** 0.079

(4.957) (0.011) (0.103) (0.065)

γ2 -0.167 -0.211 0.049* 0.010

(0.580) (0.245) (0.026) (0.009)

γ3 -0.147 -0.010 0.011* -0.003

(0.329) (0.024) (0.006) (0.002)

ψ 0.908 1.192* 0.010* 1.460***

(1.898) (0.126) (0.005) (0.498)

T 1 1 1 1

ρ 0.116§ 0.229§ 0.313§ 0.218§

LL -636.384 -520.464 -775.364 -771.442

Obs. 1908 1112 1360 1258

*, **, *** indicate statistical significance at 10%, 5%, and 1% respectively.
§ indicates statistical significance at 1% using a likelihood ratio test.

Table 6: Parameter estimates of the general threshold strategy

negative value.40 Second, we do not place the restriction that γ0 > 0. As will be

seen, however, the estimate of γ0 turns out to be positive in every treatment. Third,

our estimation is done separately for each value of T given that every sequence of

play in the data is finite. The T with the highest log likelihood is selected. It should

be noted that a threshold strategy with the number of states T +1 greater than the

longest cycle in each session is identified with a grim-trigger strategy.

Table 6 reports the estimates of the coefficients in (16). The standard errors

are bootstrapped using a fixed T .41 The estimated T is 1 in every treatment.

40The smaller the value we choose for γ4, the more likely do the two action choices differ from

each other. In essence, we have chosen the smallest value for which the action choices are the same

for the mean values of νi and uit. We do not expect that other choices would yield significantly

different conclusions. For the strategy with T = 1, of course, the choice of any value for γ4 is

irrelevant.
41Fifty replications using the full sample size are computed. Computation of standard errors for

T (a discrete variable) is omitted. It would add little to the interpretation of the results.
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Once again, the random-effects specification is not rejected for any treatment. It

is also worth noting that γ0 is statistically significant in the β = 10 treatment in

contradiction to the prediction of the theory: This suggests that the subjects use

the public signal even when they should not.

Few coefficient estimates are statistically significant for the β = 0, β = 1 and

β = 10 treatments, while all regressors are statistically significant for the β = 4

treatment. We suspect that the lack of statistical significance results from the

inclusion of too many parameters. This point is examined in more detail in the next

section.

In general, the model has explicative power. For each β ≤ 4, a likelihood ratio
test rejects any of the random choice model described in Table 5 at the 1% sig-

nificance level. On the other hand, for β = 10, the random choice model cannot

be rejected even at the 10% level. We observe the following concerning the base

threshold level a in (11): The coefficient estimates of α and γ0 both decrease with

noise, and the ratio of those estimates ( αγ0 ) decreases with noise. This indicates from

(15) that the subject-independent component of the base threshold a decreases with

noise. On the other hand, the ratio of the estimates of ψ and γ0 (i.e.,
ψ
γ0
) increases

with noise, indicating that the weight on the subject-specific component of a in-

creases with noise. In other words, as noise increases, the gap in the base threshold

levels widens across individuals.

6.2.4 Restricted threshold strategies

We now restrict some of the parameters of the general threshold specification and ex-

amine the performance of the resulting models. Specifically, the tested specifications

are as follows:

Sa: b1 = b2 = b3 = 0

Sb: b1 = b2 = 0, b3 = −2

Sc: b1 = −2, b2 = −∞, b3 = 0

Sd: b1 = b3 = −2, b2 = 0

Se: b1 = b3 = 0, b2 = −∞

The specific values are chosen based on the following considerations: The restriction

b1 = 0 implies that the threshold in state 0 is independent of the player’s own
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γ1 γ2 γ3

Sa 0 0 0

Sb 0 0 −2γ0
Sc −2γ0 γ0z − α− ψ 0

Sd −2γ0 0 −2γ0
Se 0 γ0z − α− ψ 0

z denotes the lowest realization of z.

Table 7: Parameter restrictions under each specification

action. In other words, even if the player has deviated to H in state 0 and is himself

responsible for the downward shift of the distribution of the public signal, he ignores

its effect. When b1 = −2, on the other hand, the threshold in state 0 is lowered after
an own deviation to H in state 0 to properly discount its effect on z.42 Similarly,

when b3 = 0, the threshold in state T is independent of the own action, and when

b3 = −2, it is lowered when the player has chosen action H (as intended in state T ).

The restriction on b2 concerns the length of the punishment phase: When b2 = −∞,
the punishment phase is of fixed length T and transition from state T to state 0 is

automatic, and when b2 = 0, the threshold in state T is the same as that in state 0

and the punishment phase is of variable length. When T = 1, threshold strategies

with b2 = 0 resemble the tit-for-tat strategy in that their (on-the-path) reaction is

determined only by the most recent public signal and that it does not depend on

the state.

The above restrictions on b1, b2 and b3 translate to those on γ1, γ2 and γ3
through (15). Just as in the case of γ4 discussed earlier, we would like to generate

randomness by uit even when b2 = −∞. For this reason, we replace γ2 = −∞ by

γ2 = γ0z−α−ψ, where z denotes the lowest realization of z: When γ2 = γ0z−α−ψ,
the inequality between γ0zt and κit+ uit stays the same as when γ2 = −∞ for each

realization of zt if νi and uit are at or below their mean values, but is reversed when

νi+uit takes a large positive value. In sum, the restrictions for each model are those

given in Table 7 as well as γ0 > 0 and γ4 = γ0z − α− ψ (as mentioned earlier).

Our findings can be summarized as follows: The minimal punishment length T

is estimated to be 1 in each model. In terms of their fit levels, the five models are

42Note that the probability that i’s opponent played L given the public signal z and the own

action ai = L is the same as that given z − 2 and ai = H.
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β = 0 β = 1 β = 4 β = 10

α 8.391*** 4.220*** 0.309* -0.330**

(0.599) (0.511) (0.168) (0.159)

γ0 0.504*** 0.274*** 0.048*** 0.005*

(0.031) (0.027) (0.007) (0.003)

ψ 0.819*** 1.253*** 1.219*** 1.389***

(0.257) (0.375) (0.242) (0.250)

ρ 0.124§ 0.227§ 0.286§ 0.184§

LL -639.219 -520.528 -784.588 -772.695

Obs. 1908 1112 1360 1258

*, **, *** indicate statistical significance at 10%, 5%, and 1% respectively.
§ indicates statistical significance at 1% using a likelihood ratio test.

Table 8: Parameter estimates of the (Sa) specification

ordered almost identically for all the treatments: (Sa) has the best fit and is followed

by (Sb), (Sd), (Se) and (Sc) in this order.43 The remaining results are obtained using

likelihood ratio tests. In every treatment except for β = 4, we cannot reject at the

10% level the hypothesis that the (Sa) specification fits the data as well as the general

threshold specification does. In the β = 4 treatment, however, (Sa) is rejected at

the 1% level. With a few exceptions, the corresponding hypothesis for each one of

the other specifications is rejected at the 1% level in every treatment. We depict in

Figure 9 the (Sa) specification. It can be checked that given our parameter values,

there exists a threshold k for which (Sa) is a symmetric Nash equilibrium strategy if

and only if the noise level β ≤ 2
³
log 5δ

5δ−2

´−1
≈ 3.4026.44 This may in part explain

the rejection of this strategy in the β = 4 treatment.

The fact that (Sa) is not rejected for β = 10 indicates that some subjects may

condition their behavior on the public signal even though the theory suggests that

they should not. Again the random-effects and ψ both turn out to be statistically

43 (Sd) and (Se) are reversed for β = 1 and (Se) and (Sc) are reversed for β = 10.
44For δ > 2/5 and β ≤ 2 log 5δ

5δ−2

−1
, the optimal threshold is given by

k∗(β, δ) = 18 + β log

1
δ
− 1 + ( 1

δ
− 1)2 + e−

2
β (3− 4e−

2
β )

3− 4e−
2
β

≤ 18.

It can also be verified that (Sa) cannot be a symmetric perfect equilibrium strategy for any β.

32



z ≤ a 

z > a 

z > a 

z ≤ a 

State 0 
Play L 

State 1
Play H

Figure 9: The (Sa) specification

significant, implying the existence of asymmetry across subjects. As with the general

threshold specification, the coefficient estimates of α and γ0, as well as the ratio of

those estimates ( αγ0 ) all decrease with noise, while the estimate of ψ and the ratio

of the estimates of ψ and γ0 both increase with noise.

Since the rejection of the (Sa) specification in the β = 4 treatment indicates

that at least one of the parameters b1, b2, and b3 is non-zero, we test the following

additional specifications:

Sa-i: b2 = b3 = 0

Sa-ii: b1 = b3 = 0

Sa-iii: b1 = b2 = 0

Both (Sa-ii) and (Sa-iii) are rejected at the 1% level, whereas (Sa-i) is not rejected

at the 10% level.45 The estimates for γ0 and γ1 both turn out positive, implying

that b1 = γ1/γ0 > 0, or that subjects have a higher threshold following an own

deviation to H in state 0. It is not clear why the estimated strategy only in this

treatment conditions on private actions.

As a further examination of the (Sa) specification, we report below the results

of two alternative tests that do not rely on the parametric assumptions used for the

estimation of the threshold strategies.

First, we test the hypothesis that b1 = b3 = 0 in the perfect monitoring treat-

ment (β = 0) using the sign test (Snedecor and Cochran 1980), which requires no

45The coefficient estimates are α = 0.554, γ0 = 0.059, γ1 = 0.196, ψ = 1.048, and ρ = 0.339.
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parametric assumption. Suppose that a player uses a threshold strategy with b1 = 0

in the perfect monitoring game. Then the condition of transition from state 0 to

state 1 should be neutral with respect to the identity of the deviator. In other words,

if the opponent’s deviation in state 0 moves the player to state 1, then so does his

own deviation. This can be tested as follows. Take any subject i and consider the

following two sequences of play: In the first sequence, both i and his opponent j

play L in period t − 2, and i plays L and j plays H in period t− 1. In the second
sequence, both play L in t−2 and i plays H and j plays L in t−1. When b1 = 0, i’s
action in period t should be the same conditional on either sequence. We compare

the rate that subject i plays action H after the first sequence with that after the

second sequence using a sign test. The null hypothesis that they are the same can-

not be rejected (p-value = 0.51): 6 subjects play H more often when they played

L in period t − 1, 3 less often and 1 exactly the same number of times. Assuming
T = 1, we can also test if b3 = 0 by comparing the rate that subject i plays L

after the sequence ((H,H), (H,L)) with that after the sequence ((H,H), (L,H)).

Again, the null hypothesis that they are the same cannot be rejected (p-value =

0.45): 2 subjects played L more often when they played L in t− 1, 5 less often, and
1 the same number of times. These results support the findings from the likelihood

ratio test. They in particular imply that the specifications (Sb)-(Sd), which all have

(b1, b3) 6= (0, 0), are unlikely.46

To give a better idea on how well the (Sa) strategy fits, we check how well

the deterministic specification of the (Sa) strategy (i.e., b1 = b2 = b3 = 0 in (11)

and (12)) describes the data. Specifically, pick any subject, fix the base threshold

level a, and consider the sequence of actions this strategy would generate given the

sequence of the public signals and his own actions. For each value of a, we compare

the actions thus generated against the actions actually chosen by the subject, and

count the number of periods in which the former matches the latter. We then choose

a so as to maximize the hit rate, i.e., the ratio of periods for which the two action

choices coincide. It is 93% for the median player and 88% on average in the β = 0

treatment.47 Likewise, the median and average hit rates are 80% and 82% in the

β = 1 treatment, 77% and 77% in the β = 4 treatment, and 67% and 71% in the

β = 10 treatment. All these numbers are statistically different from 50% (a coin

toss) at the 1% level.

46While (Se) has (b1, b3) = (0, 0), it performs extremely poorly in the likelihood ratio test.
47 In other words, when the subjects are ranked by their hit rates, the hit rate of the median

subject is 93%.
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The results of these alternative tests provide a stronger support for the use of

the (Sa) strategy by the subjects.

7 Discussions

As discussed in the Introduction, this paper analyzes cooperation in infinitely re-

peated games with imperfect public monitoring under the exact conditions of the

standard theory. It studies the effect of noise levels in a standard oligopolistic set-

ting where deviations monotonically shift the distribution of the one-dimensional

public signal. Our findings suggest that subjects do cooperate in such an environ-

ment, and their payoffs are a decreasing function of the level of noise as predicted.

The paper also analyzes the subjects’ strategies by focusing attention on threshold

strategies, which encompass trigger and other strategies that have been frequently

discussed in the literature. Our estimates suggest that the subjects’ strategies in

most treatments have a remarkably simple representation: In every period, this

strategy chooses the cooperative action when the public signal in the last period is

above a certain threshold, and chooses the punitive action otherwise.

While the present paper limits its theory to symmetric equilibrium payoffs, the

data suggests a certain degree of asymmetry in the subjects’ strategies. A few com-

ments are in order regarding this point. First, a theory of asymmetric equilibrium

payoffs as a function of noise would be enormously complex. We think that the sim-

plifying assumption of symmetry provides a good approximation to our qualitative

findings on noise and cooperation.48 Second, while the consideration of asymmetric

strategy profiles raises efficiency, it appears to add little to our analysis of payoffs:

In the low noise treatments, the observed payoffs are lower than the maximal sym-

metric equilibrium payoff. Hence, they are also lower than the maximal asymmetric

equilibrium payoff. In the high noise treatments, on the other hand, the observed

payoffs do exceed the maximal symmetric equilibrium payoff. However, it is not easy

to explain this through asymmetric equilibria either. The case in point is the control

treatment where the subjects’ payoffs are strictly positive. In theory, however, the

unique (symmetric or asymmetric) equilibrium in this treatment is the repetition of

the one-shot Nash equilibrium, which yields zero.

48 In fact, symmetry is the working assumption of much of the experimental literature, which

often finds asymmetries across subjects. See, for example, Roth (1995) and Casari, Ham and Kagel

(2004).
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One possible explanation for the observed deviations of the subjects’ payoffs

can be provided by trembling in choosing actions. Suppose, for example, that the

noise is low so that the efficient equilibrium strategy entails the cooperative action

L most of the time on the equilibrium path. Then, when a player trembles, he

switches from L to H more frequently, triggering a punishment and lowering his

payoff from the level without trembling. On the other hand, if the noise is high,

the efficient equilibrium strategy entails H most of the time, and trembling causes

switching from H to L more often. This raises the player’s payoff from the level

without trembling.

In comparison with the real industrial setting, the subjects in our experiments

play in an extremely simple environment with two stage actions and a single public

signal. It remains to be seen whether the paper’s observation continues to hold in a

more complex environment that mimics the reality. In this sense, more analysis is

required for the discussion of its implications on social welfare.

Appendix

Proof of Proposition 1. By the bang-bang property of a perfect public equi-

librium (Abreu et al. (1990, Theorem 3)), the maximal symmetric perfect public

equilibrium payoff v can be generated by a stationary grim-trigger equilibrium σ

which plays the symmetric action profile â throughout the cooperation phase and

reverts to a0 if and only if z /∈ Q for some Q ⊂ R.49 Consider an alternative grim-
trigger strategy profile σ̂ which begins with â and reverts to a0 if and only if z ≤ k,

where k is such that

P (z ∈ Q | â) =
Z
Q
h(z | â) dz =

Z ∞

k
h(z | â) dz = P (z > k | â). (17)

It then follows from (2) that σ̂ and σ yield the same payoff. On the other hand, the

incentive constraint (5) for this strategy can be written as

1− δ{1−H(k | a0i , â−i)}
1− δ{1−H(k | â)} ≥ gi(a

0
i , â−i)− g0

ĝ − g0
. (18)

In what follows, we show that σ̂ is also an equilibrium by verifying (18). Denote

K = (k,∞) and write for ai ∈ Ai,

M(ai) =

Z
K\Q

h(z | ai, â−i) dz and N(ai) =

Z
Q\K

h(z | ai, â−i) dz.

49Generation of a perfect public equilibrium payoff below v requires the use of a different Q in

period 1.

36



Note that M(âi) = N(âi) by (17), and that

P (z > k | ai, â−i) = P (z ∈ Q | ai, â−i) +M(ai)−N(ai).

Note that (18) follows from P (z > k | a0i , â−i) ≤ P (z ∈ Q | a0i , â−i), or equivalently,
M(a0i ) ≤ N(a0i ). Assumption 1 implies that

M(a0i ) =

Z
K\Q

h(z | a0i , â−i) dz

=

Z
K\Q

h(k | a0i , â−i)
h(z | a0i , â−i)
h(k | a0i , â−i)

dz

≤
Z
K\Q

h(k | a0i , â−i)
h(z | â)
h(k | â) dz

=
h(k | a0i , â−i)

h(k | â) M(âi),

and that

N(a0i ) =

Z
Q\K

h(z | a0i , â−i) dz

=

Z
Q\K

h(k | a0i , â−i)
h(z | a0i , â−i)
h(k | a0i , â−i)

dz

≥
Z
Q\K

h(k | a0i , â−i)
h(z | â)
h(k | â) dz

=
h(k | a0i , â−i)

h(k | â) N(âi).

Therefore,

M(a0i )−N(a0i ) ≤
h(k | a0i , â−i)

h(k | â) {M(âi)−N(âi)} = 0.

This completes the proof. //

Characterization of K(δ) and k∗(δ). Proposition 3 below provides a character-

ization of the set K(δ) of thresholds for which player i finds playing âi incentive

compatible.

Assumption 4 f is continuous, and f(0) = maxx∈R f(x).

Assumption 4 holds for many standard distributions as well as the one (10)

used in our experiment. The following proposition shows that the optimal threshold

under such a distribution is always below the expected value of the public signal.
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Proposition 3 Suppose that Assumptions 2 and 3 hold. Then K(δ) is a (possi-

bly empty) closed interval. If, in addition, Assumption 4 holds, then the optimal

threshold k∗(δ) < s(â) when K(δ) 6= ∅.

Proof. Define

W (k, ai) =

Z ∞

k−s(â)

½
l − f(x+ d)

f(x)

¾
f(x) dx.

After some algebra, we see that (7) is equivalent to

W (k, ai) ≥
l − 1
δ

(19)

Since f satisfies Assumption 3 and d ≥ 0, it can be verified that f(x+d)
f(x) is weakly

decreasing in x. Take any k and k0 such that k < k0 and W (k, ai), W (k0, ai) ≥ l−1
δ .

Then for any k00 between k and k0,

W (k00, ai) =W (k, ai)−
Z k00−s(â)

k−s(â)

½
l − f(x+ d)

f(x)

¾
f(x) dx,

and

W (k00, ai) =W (k0, ai) +

Z k0−s(â)

k00−s(â)

½
l − f(x+ d)

f(x)

¾
f(x) dx.

Since the quantity inside the brackets in each integrand is weakly increasing in x, if

the first integral is positive, so is the second, and equivalently, if the second integral

is negative, so is the first. In either case, we have W (k00, ai) ≥ l−1
δ . This implies

that the set of k’s which satisfy (8) is convex. That K(δ) is closed follows from the

continuity of W in k.

Suppose now that Assumption 4 holds. We then have

l − f(d)

f(0)
> 0.

Since l− f(x+d)
f(x) is weakly increasing and continuous in x, if W (k, ai) ≥ l−1

δ for some

k ≥ s(â), then W (s(â) − γ, ai) > W (s(â), ai) ≥ W (k, ai) ≥ l−1
δ for a sufficiently

small γ > 0 as well. This shows that k∗(δ) < s(â).

Description of K(δ). When the distribution of the random variable x is as spec-

ified in (10) with β > 0, the set K(δ) of effective thresholds is explicitly given as
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follows. Let

λ = log
δ2l

(δ l + 1− l)2
,

µ = log
δ l

δ(2l − 1)− 2(l − 1) ,

ν = log
δ

δ l − 2(l − 1) .

Note that µ is well-defined when δ > 2(l−1)
2l−1 , and ν is well-defined when

2(l−1)
l < δ <

1. Furthermore, whenever these quantities are well-defined, we have log l < λ <

µ < ν. The following three cases arise depending on the value of the discount factor

δ:

1) δ ∈
³
0, 2(l−1)2l−1

i
.

K(δ) = ∅.

2) δ ∈
³
2(l−1)
2l−1 , min

n
2(l−1)

l , 1
o´
.

K(δ) =

⎧⎪⎨⎪⎩
[k3, k2] if d

β ∈ [µ,∞),
[k1, k2] if d

β ∈ [λ, µ),
∅ if d

β ∈ (0, λ),

where

k1 = s(â) + β log l−1/2
n
e−λ/2 −

¡
e−λ − e−

d
β
¢1/2o

,

k2 = s(â) + β log l−1/2
n
e−λ/2 +

¡
e−λ − e−

d
β
¢1/2o

,

k3 = s(â) + β log
2(1− δ)(l − 1)
δ
n
e
d
β − l

o .

In this case, we have (a) k1 > s(a0i , â−i) ⇔ d
β < µ, (b) k3 < s(a0i , â−i) ⇔

d
β > µ, and (c) k2 < s(â).

3) δ ∈
h
min

n
2(l−1)

l , 1
o
, 1
´
.

K(δ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[k3, k4] if d

β ∈ [ν,∞),
[k3, k2] if d

β ∈ [µ, ν),
[k1, k2] if d

β ∈ [λ, µ),
∅ if d

β ∈ (0, λ),
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where k1, k2 and k3 are defined as above and

k4 = s(a0i , â−i) + β log
δ
n
le

d
β − 1

o
2(l − 1) .

In this case, we have (a) and (b) above, and (c’) k2 < s(â) ⇔ d
β < ν, and (d)

k4 > s(â) ⇔ d
β > ν.
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